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Abstract: This contribution is concerned with vibration rejection by nonlinear
control techniques in steel industry, particularly in rolling mill plants. The high
quality requirements of rolled products, especially in relation to the thickness
tolerances, mean a challenging task also from a control point of view. The key
part of this contribution deals with so-called wrapper rolls as well as chatter
vibration phenomena. With regard to the control design a mathematical model
based on physical considerations is introduced where the essential nonlinearities
of the system are taken into account. For the purpose of vibration rejection
two nonlinear control concepts based on energy considerations and the theory
of differential flatness are presented. Copyright c©2005 IFAC
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1. INTRODUCTION

The high quality requirements of steel rolling in-
dustry products mean a challenging task not at
least from a control point of view. Especially the
observance of the restrictive thickness tolerances
and surface properties of rolled products demand
effective vibration rejection concepts. Since there
is also a strong economic objective to increase the
efficiency of mill plants these vibration phenom-
ena gain more and more in importance.

In this contribution two common vibration prob-
lems of a rolling process are investigated, namely
vibrations of a so-called wrapper roll and third
octave chatter. The arrangement of a wrapper roll
is typically used for coiling the rolled strip. This
system is poorly damped and in order to avoid

damages of the coiled strip this fact has to be
taken into account for a controller design. The
phenomenon of third octave chatter is especially
observed in thin product cold rolling plants. Char-
acteristic for this form of rolling mill chatter is
a vertical vibration of the rolls as well as of the
mill housing in the frequency range of the musical
third octave. The consequences of these vibrations
vary from rejected products to damages of the
rolling plant and consequently lead to lasting pro-
duction delays.

The presented active vibration rejection concepts
for the discussed mill plant problems rely on
model-based nonlinear control techniques. In Sec-
tion 2 the wrapper roll vibrations are treated
by considering the port controlled Hamiltonian
representation of the dynamic system and an



energy-based controller design. The active rejec-
tion of third octave chatter which is investigated
in Section 3 uses the theory of differential flatness
whereby the trajectory tracking problem can be
solved in a straightforward manner.

2. WRAPPER ROLLS

In many rolling mills the coiling and uncoiling of
the steel strip is supported by so-called wrapper
rolls. These rolls are hydraulically pressed against
the coil and should guarantee a homogenous dis-
tance of the adjacent strip layers. The wrapper
roll is lifted off the coil and moved back again
each time the starting point of the coil passes by.
As already mentioned these wrapper assemblies
are poorly damped and therefore, it is highly
desirable to implement a robust position control
law with additional damping for that task. The
controller should not rely on the velocity signal
because separate velocity sensors are usually not
mounted. Additionally, it is not easy to obtain
a good approximation from the position signal
since it is often corrupted due to measurement
and quantization noise.

The relevant details of the wrapper assembly are
depicted in figure 1. The mechanical wrapper
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Fig. 1. A hydraulically actuated wrapper.

system belongs to the class of Euler-Lagrange
(EL) systems with Lagrangian

L =
1

2
Θq̇2 − V , V = mlglg sin (q + κ)

with the generalized coordinate q = α, the con-
stant moment of inertia Θ – the moment of inertia
of the actuator and its mass is neglected – , the
mass of the wrapper assembly ml, the constant of
gravity g and the relative coordinates of the center
of gravity (cog) (lg, κ). It has to be mentioned that
the assumption of constant inertia does not mean
any restriction for the approach presented in the
following, it is also applicable for systems with an
inertia depending on the generalized coordinate.

The corresponding Euler-Lagrange equation aug-
mented by a damping term with damping con-
stant d and by the hydraulic force Fh as fictitious
input reads as

Θq̈ = −∂qV − dq̇ + ∂qxh (q) Fh − Ml ,

with the piston position

xh (q) =
√

l21 + l22 − 2l1l2 cos (ε − q) − lh0 ,

lh0 = lh|xh=0, and an unknown but constant
external load torque Ml. Here and in the following
∂q indicates the partial derivative with respect to
q. Let ∂qxh (q) 6= 0 be met in the domain under
consideration.

In general, the hydraulic actuator has a double
acting piston and one may assume that each
chamber is rigidly connected to a three-land-four-
way spool valve. Often, the dynamics of the com-
pensated servo valves are much faster than those
of the other parts of the hydraulic adjustment
system. Therefore, one can neglect the valve dy-
namics and consider the valve volume flow qv,i as
the plant input. As already shown in (Grabmair
et al., 2004) the overall system has port con-
trolled Hamiltonian (PCH) structure with the
fluid masses in both chambers as Casimir func-
tions, i.e., invariants of the system independent
of H. In the following the canonical coordinates
x = (q, p, zh1, zh2) with p = Θq̇, Fh = ph1A1 −
ph2A2,

zh1 = Fh +

2∑

i=1

(−1)
i−1

EAi ln
(
VhiV

−1
pi

)

zh2 = ph2A2 + EA2 ln
(
Vh2V

−1
p2

)

(1)

will be used. E > 0 indicates the constant hy-
draulic bulk modulus. The effective piston areas
are denoted by Ai, the chamber offset volumes by
Vpi, the chamber pressures and volumes by phi

and Vhi, with i = 1, 2 and Vh1 = Vp1 + A1xh (q),
Vh2 = Vp2 − A2xh (q). The PCH structure, see
(Grabmair et al., 2003), is then given by

ẋ = (J − R) ∂xHT + Gu

y = GT ∂xHT

with Hamiltonian

H = Hh +
1

2
Θ−1p2 + V

Hh =

2∑

i=1

EVhi

(
ln
(
VhiV

−1
pi

)
− 1
)
+

Vp1 (ph0 + E) e
zh1+zh2

A1E
−

ph0

E +

+ Vp2 (ph0 + E) e
zh2

A2E
−

ph0

E +

− zh1xh − (zh1 + zh2)
Vp1

A1

− zh2
Vp2

A2

,

(2)

the input matrix G for the input u = (u1, u2)



GT =

[
0 0 1 0
0 0 0 1

]

, u2 =
EA2

Vp2 − A2xh (q)
qv2

u1 =
EA1

Vp1 + A1xh (q)
qv1 −

EA2

Vp2 − A2xh (q)
qv2 ,

and the canonical skew symmetric structure ma-
trix J and the positive semidefinite dissipation
matrix R with R22 = d and zero otherwise. ph0

denotes some offset pressure.

Now, one can construct an energy-based con-
troller, which maintains the plants PCH structure
consisting of the wrapper part x1 = (q, p, zh1) and
a decoupled part x2 = (zh2), and asymptotically
stabilizes the equilibrium x̆ = (q̆, 0, zh1 (q̆) , z̆h2)
by choosing

u1 = −kp1 (zh1 − zh1 (q̆))

u2 = −kp2 (zh2 − z̆h2) .
(3)

However, in hydraulic actuators usually there is
no velocity signal of the piston available and
additionally Ml and thus F̆h, i.e., the desired value
of Fh, is unknown. In order to tackle this problem,
one can introduce a dynamical extension of second
order

˙̂xobs =

[
λ1 + λ2 −1
λ1λ2 0

]

x̂obs +

[
1
0

]

uobs+

[

−
(

(λ1 + λ2)
2
− λ1λ2

)

Θ − ((λ1 + λ2) d)

−λ1λ2 ((λ1 + λ2) Θ + d)

]

q̄

[
p̂

ˆ̆uobs

]

= x̂obs +

[
− (λ1 + λ2) Θ − d

−λ1λ2Θ

]

q̄ ,

(4)

by means of a reduced disturbance observer for
d
dt

F̆h = 0 with

uobs = ∂qV + ∂qxh (q) Fh

ˆ̆
Fh =

ˆ̆uobs + ∂qV

∂qxh (q)

and the chosen stable eigenvalues λ1, λ2 of the
observer error dynamics. Here and in the follow-
ing, x̄ = x− x̆ indicates coordinates relative to the
equilibrium x̆. Then, the observer error dynamics
with e1 = p̂− p and e2 = ˆ̆uobs − ŭobs are given by

[
ė1

ė2

]

=

[
λ1 + λ2 −1
λ1λ2 0

]

︸ ︷︷ ︸

Aobs

[
e1

e2

]

.

Additionally, there exists a positive definite solu-
tion P−1 of the Lyapunov type equation

P−1AT
obs + AobsP

−1 + 2Q = 0

for any positive definite Q. This leads to the
decomposition Aobs = (Jo − Q) P with Jo =
(Aobs + QP ) P−1.

Now, one chooses an overall desired PCH struc-
ture (Ja, Ra, Ha) for the extended state x̄e =

(q̄, p, z̄h1, e1, e2, z̄h2) with some constants Γ1,Γ2 >
0, a positive definite augmented Hamiltonian

Ha =
p2

2Θ
+ V −

∂qV (q)|
q=q̆

∂qxh (q)|
q=q̆

(xh − xh (q̆))

Γ1
z̄2
h1

2
+ E

∫ xh(q̆+q̄)

xh(q̆)

(

A1 ln

(
Vh1 (x̆h + τ)

V̆h1

)

+

A2 ln

(

V̆h2

Vh2 (x̆h + τ)

))

dτ + Γ2
z̄2
h2

2
+

1

2
eT Pe

and

Ja =









0 1 0 0 0
−1 0 β + γ 0 0

0 −β − γ 0 −δT 0
0 0 δ Jo 0
0 0 0 0 0









, δ̃ =

[
δ̃1

δ̃2

]

Ra =












0 0 0 0 0
0 d −β + γ 0 0

0 −β + γ
kp1

Γ1
δT 0

0 0 δ Q 0

0 0 0 0
kp2

Γ2












, δ = P−1δ̃

with

β =
∂qxh (q)|

q=q̆+q̄

2Γ1
, γ = Θ

kd

2

δ̃1 =−
kd

2
, δ̃2 = −

kp

2 ∂qxh (q)|
q=q̆+q̄

.

This choice guarantees local asymptotic stability
of the closed loop system due to

Ḣa = −∂x̄e
HaRa∂x̄e

HT
a

and LaSalle’s principle if kp1, kp2, kd > 0 and if

kp1d

Γ1
−

(

∂qxh (q)|
q=q̆+q̄

2Γ1
− Θ

kd

2

)2

≥ 0

is fulfilled. These conditions are obtained by de-
composing Ra into the sum of positive semidefi-
nite matrices. The obtained control law is given
by

u1 =−kp1

(

zh1 −
1

∂qxh (q)

(

ˆ̆uobs + ∂qV
))

−kp1EA1 ln




Vh1

Vp1

(
Vp2

Vh2

)A2

A1





∣
∣
∣
∣
∣
∣
q=q̆

− kdΘp̂

u2 =−kp2z̄h2

with the observer equations from (4) and the
transformations (1). The tuning parameters of
the controller are the proportional gains kp1, kp2,
the damping gain kd and the eigenvalues of the
observer. The performance of the energy-based
dynamic controller with damping compared to the
pure static controller (3) is demonstrated by the



simulations in figure 2. At the scaled time value
0.5 an external load torque is applied, which is
removed at 1.5.
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Fig. 2. Wrapper position (xh) and velocity (vh)
responses with static and dynamic controller.

3. THIRD OCTAVE CHATTER

The occurrence of third octave chatter vibrations
is typically found in multi-stand cold rolling mills
where the strip deformation takes place under
a considerable strip tension. An experimentally
proven method of third octave chatter prevention
proposed in literature (see, e.g., (Boulton et al.,
2000)) is essentially based on an operating speed
reduction. But this method is undesirable since
it causes less production efficiency of the plant.
Therefore, this section is focused on a model-
based active rejection of third octave chatter by
nonlinear control.

3.1 Roll-gap Model

Under the action of the roll force Fr and the
entry and exit strip tensions σen, σex the strip
is deformed in the roll-gap elasto-plastically in
order to achieve the desired output thickness hex,
see figure 3. The strip entering the roll-gap moves
slower than the work roll surface (backward slip),
such that due to the frictional and normal stresses
arising in the roll/strip interface plastic deforma-
tion of the strip occurs after a short elastic com-
pression zone. After passing the so-called neutral
point, where the strip speed coincides with the
velocity of the roll, the frictional stresses change
their direction due to the occurrence of forward
slip. This implies a decrease of the contact stresses
unless the plastic deformation of the strip stops
and an elastic recovery zone occurs at the exit
domain of the roll-gap.

The normal and frictional stresses acting in the
roll/strip interface also result in an elastic defor-
mation of the work rolls, see again figure 3. In the

l o w e r  w o r k  r o l l

x

u p p e r  w o r k  r o l l

s x xs x xs e n s e x

h e n
h e x

w r

w r

h n

F r

F r

Fig. 3. Scheme of the roll-gap (the indicated
directions of the load are related to the strip).

case of cold rolling, the assumption of a circular
roll-gap shape under the action of the rolling load,
though with a larger so-called equivalent radius,
is appropriate, see, e.g., (Bland et al., 1951). How-
ever, for the case of temper and thin strip rolling,
this approximation is no longer valid and the
elastic work roll deformations have to be consid-
ered in detail. These models are usually referred
to as non-circular arc roll-gap models, see, e.g.,
(Fleck et al., 1992) and either include the elastic
halfspace solution or Jortner’s solution (Jortner
et al., 1960) for the radial displacement field due
to a piecewise constant normal load in order to
account for the roll deformations. A different ap-
proach to cope with this problem is proposed
in (Fuchshumer et al., 2004). Motivated from a
control point of view, the displacement fields are
approximated in the sense of the Rayleigh-Ritz
method. This yields a finite-dimensional approxi-
mation of the roll deformation problem.

As the dynamics of the processes taking place
in the roll-gap are considerably faster than the
dynamics of the mill stand and the hydraulic
adjustment system, it is appropriate to set up a
quasi-static roll-gap model. The resulting model is
represented by a set of implicit algebraic equations

fRFM (Fr, hen, hex,σen, σex) = 0 (5)

relating the strip entry and exit thicknesses hen,
hex, the tensions σen, σex, the geometry and
material parameters, the roll force Fr and the slip
at the entry and exit point of the roll-gap.

3.2 Mill Stand Interconnection Model

In multi-stand rolling mills the essential coupling
of adjacent mill stands is given by a strip el-
ement of length Li and cross-section As,i, see
figure 4, which is modelled as a massless linear-
elastic spring with Young’s modulus Es since the
eigenfrequencies of the distributed parameter sys-
tem are much higher than the dynamics of the
considered system. The so-called looper is acting
on the strip in order to adjust the strip length
between adjacent mill stands, see again figure 4.
For modelling it is assumed that the looper is
permanently in contact with the strip and that
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Fig. 4. Coupling of adjacent mill stands.

the rotational inertia and friction effects of the
looper roll can be neglected. Therefore, with the
abbreviations

α1 =
hn,i−1

hex,i−1
Ri−1 , α2 =

hn,i

hen,i

Ri

α3 = xl




1

√

L2
i,1 + x2

l

+
1

√

L2
i,2 + x2

l





and the strip stiffness cs,i =
Es,iAs,i

Li
the equations

of motion of the looper read as

ẋl = vl (6a)

ẋs = α2ωi − α1ωi−1 + α3vl (6b)

mlv̇l = Fl − cs,ixsα3 − mlg − dlvl , (6c)

where xl, vl denote the displacement and the
velocity of the looper, xs the elongation of the
linear elastic strip element, Fl the force acting
on the looper, ml the mass of the looper and
Ri, ωi the radius and the angular velocity of the
work rolls of the i–th mill stand. Furthermore,
the dynamics of the main drives follow under the
assumption of symmetry of upper and lower rolls
for the (i − 1)–th stand as

Ir,i−1ω̇r,i−1 = Mr,i−1 − Md,i−1 − dr,i−1ωr,i−1

− (Ft,i−1 − cs,ixs) Ri−1 (7)

with the inertia of the rolls reduced to the shaft of
the work roll Ir, the torque of the main drives Mr,
the torque of strip deformation Md, the coefficient
of viscous friction dr and the force according to
the strip tension Ft. In analogy one obtains

Ir,iω̇r,i = Mr,i−Md,i−dr,iωr,i−(cs,ixs − Ft,i+1) Ri

(8)
for the drive dynamics of the i–th stand.

The interaction of the roll force, the strip tensions
and the strip thicknesses, described by (5) and
(6b), allow an explanation for the occurrence
of third octave chatter by an instability of the
mechanical interconnected rolling mill stand. The
occurrence of the instability clearly depends on
the operation point of the mill plant. For a more
detailed discussion of this observation the reader
is referred to, e.g., (Holl et al., 2004).

In order to illustrate a chatter initiation in sim-
ulation a disturbance in the strip entry thickness

of 10µm (e.g., due to a welding seam) is assumed.
In figure 5 these simulation results are compared
with measurements of a plant where third octave
chatter was observed.
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Fig. 5. Simulation and measurement results of a
third octave chatter initiation.

3.3 Flatness-based Control

For an active chatter rejection it is necessary to
prevent that the mechanical feedback established
by the strip causes an unstable operating point
of the mill plant. This can be obtained by the
control of the strip tension with the looper as well
as with the main mill drives as control inputs u =
(Fl,Mr,i−1,Mr,i). The mathematical model (6)-
(8) formulated in state space representation with
the state variables x = (xl, xs, vl, ωr,i−1, ωr,i) can
be written as a dynamic system of the form ẋαx =
fαx (x, u), αx = 1, . . . , n, with m inputs and the
output functions yαy = cαy (x), αy = 1, . . . ,m.
It is well known in control theory that such a
nonlinear system is state feedback equivalent to
a linear time-invariant one, if and only if it has
some vector relative degree (r1, . . . , rm) at x0 such
that

∑m

i=1 ri = n holds, cp., e.g., (Isidori, 1995).
With regard to a flatness-based controller design
the quest for a flat output can be accomplished by
the fact that a system that has the property that
it is state feedback equivalent to a linear time-
invariant one implies the property of differential
flatness and the associated output y is also a flat
output, (Fliess et al., 1995), (Rudolph, 2003).

It is not difficult to show that the mathematical
model of the coupled mill plant (6)-(8) has a
vector relative degree (2, 1, 2) with the output
functions

h1 = σs,i = Es,ixs/Li

h2 = ωr,i (9)

h3 = xs −
√

L2
i,1 + x2

l −
√

L2
i,2 + x2

l
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Fig. 6. On active chatter rejection by nonlinear flatness-based control.

for all xl 6= 0 and therefore, the system is flat
with the flat output y = (h1, h2, h3). It has to be
mentioned that for control only the domain xl > 0
is relevant since for modelling it was assumed that
the strip is in permanent contact with the looper
roll.

The concept of differential flatness allows in ad-
dition a systematic approach for solving the tra-
jectory tracking problem. Under consideration of
the initial value the desired trajectories yd for
the components of the flat output are chosen
and therefore, the corresponding trajectories of
the control inputs are calculated. For the asymp-
totic stabilization of the trajectory tracking error
ei = yi − yi,d, i = 1, . . . ,m = 3, the dynamics
of the tracking error are adjusted by linear, time-
invariant differential equations. It is worth men-
tioning that the torque required for strip defor-
mation is known only insufficiently with respect
to an exact input-to-state linearization. Therefore,
to obtain stationary accuracy for the flat output
an integral term is added to the control law.

Finally, in figure 6 it is demonstrated in simu-
lation that by means of the proposed flatness-
based control approach chatter does not occur for
relevant operating points. Moreover, an increase
of the strip tension as well as of the mill plant
operating speed is illustrated by means of a refer-
ence trajectory, respectively. The authors ask for
understanding that the data used for this as well
as the previous results can not be stated due to
observance of secrecy.

4. CONCLUSIONS

This contribution deals with two applications of
model-based nonlinear control in rolling industry.
By energy considerations of a mechanical Euler-
Lagrange system driven by a hydraulic actuator
the vibration problem of a so-called wrapper roll
is investigated. For an active rejection of the third
octave chatter phenomenon, which is caused by
an instability of the mechanical rolling mill plant,

a flatness-based control approach is discussed.
Finally, it has to be mentioned that the presented
methods are protected by patent.
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