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Abstract: The Mixed Logical Dynamical (MLD) formalism is an efficient modeling 
framework for hybrid systems which allows formulating and solving problems such as 
moving horizon predictive control and state estimation. This paper presents the 
application of the combined strategies – state estimation for fault detection and 
predictive control for water level control – to a steam generator benchmark modeled 
under a unique MLD form. Indeed, the steam generator is a time varying system for 
which the sensor failure problem has to be solved. The simulation results show that this 
unified theoretical scheme allows efficient detection of failures while maintaining the 
water level within specified limits. Copyright © 2005 IFAC 
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1. INTRODUCTION  

 

The problem of water level control of steam 
generators (SGs) is of crucial importance for EDF 
(Electricité De France), where nuclear power plants 
contribute over 70% of the power demand. The 
physics of such plants requires a smooth and 
uninterrupted operation, unsatisfactory performance 
of this controlled system would result in a violation 
of the safety limits. The main difficulties in designing 
an effective level control arise from the physics of 
the plant and measurement reliability. The plant 
exhibits inverse response behavior due to the so-
called “swell and shrink” effects and the flow measu-
rement is less reliable, particularly at low power. 
Furthermore, sensor redundancy is used to deal with 
potential sensor failures. The plant is also a time-
varying system with dynamics that move slowly as 
the internal power changes and with unstable open 
loop response. Finally, both control input and output 
are constrained. 
 

Several methods based on a non hybrid model of the 
SG have been applied to control the water level, 

without considering the sensors failures and with less 
strict specifications than those considered in this 
paper, e.g. ∞H  in (Ambos, et al., 1999), PID in 
(Eborn, et al., 1999). 
 
On the other hand, the Mixed Logical Dynamical 
(MLD) formalism (Bemporad and Morari, 1999) can 
describe a large number of important classes of so-
called hybrid systems, including both continuous and 
discrete aspects with dynamics, logic and constraints. 
Furthermore, it allows formulating and solving 
problems such as state estimation or control, and 
receding horizon strategies in that sense provide 
efficient tools for both aspects. An innovative 
strategy is thus to combine receding horizon 
estimation and control within the unique MLD 
modeling framework, considering the SG benchmark 
as a hybrid system. This is fully justified by the fault 
detection feature. A first step in this direction was 
presented in (Thomas, et al., 2003), where only the 
problems of state estimation and sensors failure 
detection were addressed. The purpose of this paper 
is thus to examine the feasibility of the combination 
control/estimation on the SG benchmark. 



  

The paper is organized as follows: Section 2 briefly 
presents the steam generator benchmark and its 
specifications. The proposed combined estimation 
and control solution using MLD framework is des-
cribed in Section 3 in the particular SG case. Section 
4 presents the application of this strategy to the steam 
generator benchmark. Finally, Section 5 presents 
some conclusions. 
 
 

2. THE STEAM GENERATOR BENCHMARK 
 
This part briefly summarizes the SG principles and 
the main features and specifications of the proposed 
benchmark. A comprehensive description of the 
benchmark can be found in (Bendotti, et al., 2002). 
 
The main objective in controlling a PWR 
(Pressurized Water Reactor) is to provide the 
commanded power while respecting certain physical 
constraints. The pressurized water in the primary 
circuit transmits the heat generated by the nuclear 
reaction to the steam generator (SG). In the SG, 
water of secondary circuit is converted to steam, 
which drives a turbo-alternator to generate electricity, 
Figure 1. The control strategy aims at maintaining the 
SG water level within permitted limits, even with 
changes in the steam flow-rate vQ  (connected to 
changes in the power demand), considered as a 
disturbance, by acting on the feed-water flow-rate 

eQ , considered as the control signal. 

 

Fig. 1. PWR Description (Bendotti, et al., 2002). 
 
 
2.1 General description and modeling. 
 

The secondary fluid in the SG turns into a two-phase 
fluid, steam-water, so that the water level in the SG is 
not a well defined quantity. Two water level 
measurements are thus available: the mixture level 

egN  and the mass of water lgN . 
 
Detailed theoretical models of the SG are too 
complex for estimation or control purposes. Thus 
simplified linearized models in state space represen-
tation with 5 state variables are derived, with 
coefficients depending on the operating power and u  
the control signal applied to the valve actuating the 
feed flow-rate, ( )Tevglge QQNN=y  the measured 
outputs, vQd =  the disturbance. Only two models 
are considered below, at high power nP%80  and at 
low power nP%10  ( nP  is the nominal power), under 
the generic form (Bendotti, et al., 2002): 
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2.2 Sensor redundancy. 
 
To cope with potential sensor failures, sensor 
redundancy is imposed. In our case, the available 
measurements are the following: 
- 1eQ  and 2eQ  sensors, measuring the feed-water 

flow-rate eQ , used at high powers ( nP%50> ). 
- 1vQ  and 2vQ  sensors, measuring the steam flow-

rate vQ , used at high powers ( nP%50> ). 
- 21, gege NN  and 3geN  sensors, measuring the 

narrow range level geN . 
- One sensor measures the wide range level glN . 

 
In normal operation, each measurement is subject to 
random independent noise and offset. Furthermore, at 
low powers ( nP%50< ), where the flow-rate sensors 
are not reliable, estimates values of eQ  and vQ  
( estimeq − , estimvq −  respectively) are used instead of 
measured values. 
 
 

2.3 Benchmark specifications and scenarios. 
 
The transients, following transients are considered: 
- T1/T2/T3: A +5% step change on vQ  at power 

85% nP  / 10% nP  / 5% nP  
- T4: A -3% step change on vQ  at power 10% nP  
- T5: A -15%/min ramp corresponding to a 70% 

change of vQ  starting from 90% nP  
- T6: A -30% step change on vQ  at 60% nP  

 
The failure scenarios, the considered scenarios are: 
- F1: Ideal case, no sensor failure, no bias 
- F2: Standard case, no sensor failure, but indepen-

dent bias applied to all measurements 
- F3/F4: A slow/fast drift on one eQ  sensor 
- F5/F6: A slow/fast drift on one vQ  sensor 
- F7/F8: A slow/fast drift on one geN  sensor 
- F9/F10: A slow/fast drift on the glN  sensor 

 
The specifications, the objective is to control the 
steam generator water level geN  around a constant 
reference normalized at 0. The specifications are: 
- The magnitude of the error on the level geN  for 

vQ  step response should lie between 5± % and 
die off in less than 100 sec. Then the error should 
be less than 5,0± %. For transient T5/T6 (invol-
ving a loss of reliability in flow-rate measure-
ment), the error should lie between 10± % and 
die off in less than 150 sec. In case of sensors 
failures, a 3± % error is allowed and then should 
die off as fast as possible, where the settling time 
should be much smaller for the fast drift than for 
slow drift, as the latter is more difficult to detect. 

- The controller should be in discrete-time with a 
sampling rate ≥  0.4 sec., including saturation on 
the control signal [ ] [ ]120,4, maxmin =uu . 



  

3. COMBINED SG ESTIMATION & CONTROL 
USING MLD FRAMEWORK 

 

The MLD model describes systems by linear dyna-
mic equations subject to linear inequalities involving 
both real and integer variables, see (Bemporad and 
Morari, 1999). The auxiliary variables are introduced 
when translating propositional logic into linear 
inequalities. This formalism can also formulate and 
solve practical problems such as state estimation or 
control, and predictive strategies (Camacho and 
Bordons, 1999) in that sense provide efficient tools. 
The optimization procedure resulting from the 
moving horizon predictive control cost function 
minimization leads to a mixed integer quadratic 
programming (MIQP) problem. The dual moving 
horizon estimation problem can also be formulated as 
a MIQP, based on a MLDF (Mixed Logical Dynamic 
Fault) model, minimizing a quadratic criterion 
involving the quantities to be estimated. The 
estimation horizon extends backwards in time and 
allows at time t  to estimate the quantities of interest 
at times prior to t , see (Bemporad¸ et al., 1999). The 
proposed strategy, developed below in the specific 
SG case, is a three-step approach which unifies 
moving horizon fault detection and state estimation, 
and predictive control under the MLD formalism. 
 
 
3.1 Sensor fault detection algorithm 
 
Considering the SG, the following assumptions can 
be made: first, the sensors of a particular output are 
independent and not influenced by the sensors of the 
other outputs. Then only one fault (either fast or slow 
drift) can appear at the same time. This first step aims 
at designing a sensor fault detection algorithm which 
will select reliable measurements (i.e. sensors not 
affected by fault) for further use during the 
procedure. Each fault on a specified sensor is 
represented by an auxiliary binary variable Φ∈iφ , 

{ }1,0=Φ , which influences the sensor’s output by a 
quantity requiring the introduction of an additional 
auxiliary continuous variable iz , under the form: 
 iisi zyy +=  with gz ii φ=  (2) 

where g  is a constant value over the estimation 
horizon, iy  and isy  are respectively the sensor 
output and the measured variable. Finally, as the fault 
values g  are also unknown, an additional state must 
be included in the state vector of the MLDF model. 
As the SG has 8 sensors, each subject to 2 faults, 16 
additional binary variables might be added. To 
reduce the calculation time, only one binary variable 
for each sensor is used to model the possibility of 
sensor failure Eq. 2; indeed only fault detection is 
critical for the control problem, knowing the type of 
fault is not crucial here. To further reduce the 
optimization burden, according to the preliminary 
assumptions, the general problem can be split into p  
independent MIQPs, each one dedicated to fault 
detection of the sensors of a measured output isy . It 

is thus required to solve 4 independent sub-problems 
for the 4 measured quantities geN , glN , vQ  and 

eQ . The MLDF formulation will be explained below 
in the case of the 3 geN  sensors, the methodology 
being the same for the other measured variables. 
 
Including the disturbance d and the additional state to 
be estimated g  in the initial state vector, the state-
space representation of this hybrid system is deduced 
from Eq. 1, with [ ]Txx dgf =  under the form: 
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under the following logical relations: 
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The first logical relation is equivalent to: 
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The second logical relation becomes: 

 1;1;1 323121 ≤+≤+≤+ φφφφφφ  

With these transformations, and using Euler’s rela-
tion for discretization with sampling time sT , the 
MLDF formulation for geN  sensors is deduced: 
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Noting T the estimation horizon, the objective of the 
MIQP for sensor fault detection is to find an estimate 
of the fault vector )(ˆ ttφ  and the state: 
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assuming that the following estimated vectors are 
known at time 1−t : 
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together with the data known at time t : 
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Consider at time t  the following estimate evolution: 
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The quadratic cost function at time t  is defined by: 
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under the constraints of the model equation Eq. 5. 
The siQ  are symmetric positive semi definite 
matrices. The optimization vector at time t  is: 

 )](ˆ,),(ˆ),(ˆ,),(ˆ),([ tttTttttTtt φφzz∆xχ t LL −−= (9) 

Finally, the measurement estimate is the mean of the 
sensor values for which 0)(ˆ =ttiϕ . The same 
procedure is repeated for the other sensors. 
 
 
3.2  State reconstruction 
 
Assuming now that all selected measurements are 
reliable, the goal of this step is to merge the results of 
each previous sub-problems and find a global 
estimate of the state Eq. 6, assuming that )1( −tX

)
 is 

known at time 1−t , together with )(),( tt YU  and the 
disturbances [ ])(,),( tdTtd L− . In this case, the 
initial model Eq. 1 can be used again as no additional 
variables will appear. Consider at time t  the 
following estimate evolution: 
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The quadratic cost function at time t  giving through 
MIQP the state estimate )(tX

)
 is defined by: 
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3.3  MPC control algorithm 
 
Based on the model Eq. 1, an integral term is added 
on the geN  variable in order to cancel steady state 
error, so that the model considered for control is: 
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The following model predictive control problem is 
finally considered. Let t  be the current time, )(ˆ tx  
the current estimated state, ),( ee ux  an equilibrium 
pair or a reference trajectory value, and cT  the 
prediction horizon, find the control sequence 

( ))1()(1 −+=−+
c

Tt
t Tttc uuu L  moving the state 

from )(ˆ tx  to ex  and minimizing the criterion: 
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subject to Eq. 12, including constraints on the control 
signal as mentioned in Section 2.3, and on the control 
increments as stated below. The optimisation 
procedure of Eq. 13 leads again to a MIQP problem 
providing the control )(tu  applied to the process. 
 
 

4. APPLICATION 
 
In this section, an application of the previous strategy 
to the water level control of the SG is presented. A 
Simulink program is developed, including the plant 
model as a S-function, the estimation part (M-
function) that takes the data from the SG sensors, and 
the control program (M function) fed with the 
estimation part results. 
 
 
4.1 Implementation issues of the control strategy 
 
1- A prediction horizon equal to 5 is used with a 

sampling time sec 5.0=sT . 
2- Constraints on the control update are added: 

 5)1()()( ≤−−= kukuku∆  

3- Successive iterations show that the best configu-
ration switching from the high to the low power 
SG model corresponds to 25% power level. 

4- For the considered scenarios, and after successive 
iterations, three controllers are designed with 
the following weighting factors sets: 

• High power controller: 
 1;560;20;9 int521 ==== QIQIQIQ  

• Low power controllers (two controllers are 
necessary as the system dynamic changes too 
much with the demanded power in this range): 



  

i. For power between 12 and 25 % nP : 
 03.0;18;5.2;15.0 int521 ==== QIQIQIQ  

ii. For power less than 12 % nP : 

012.0;18;5.2;15.0 int521 ==== QIQIQIQ  

5- Regarding the transient T5, a linear transition 
from the ev QQ ,  sensors to the estimated values 
is realized to avoid the jump from measured to 
estimated values, Figure 3.  
• For vQ , transition from sensors 21, vv qq  at 

55% nP  towards estimvq _  at 35 % nP  
• For eQ , transition from sensors 21, ee qq  at 

54% nP  towards estimeq _  at 42 % nP  
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Fig. 2. Linear transition of flow rates ev QQ ,  sensors. 
 
 
4.2 Implementation issues of the estimation strategy 
 
1- The 4 sub-problems for the 4 measured quantities: 

geN , glN , vQ  and eQ  were achieved with the 
estimation horizons 1,3,6,1=T  respectively. 

2- The following diagonal weighting matrices (for 
all the sub-problems) are chosen: 

IxQIφQIyQ
IφQIxQIzQ

1.0)(;7000)(;1000000)(
;500)(;30)(;3000)(

9105

643
===

===
∆
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3- A sampling time equal to 0.1 second is used. 
4− At low power, no state estimation on vQ  and eQ  

is realized, taking as an alternative the estimvq −  
and estimeq −  values. 

 
 
4.3 Simulation results 
 
In the following, some simulation results with a 
simulation sampling time of 0.1 s. are presented. The 
scenario T1-F4 is first considered; Figure 3a shows 
that the estimation strategy succeeds in detecting the 
fault occurrence without any delay. Only sensor 
outputs affected by fault are shown in these figures. 
Figure 3b presents the results of the SG water level 
control where all the specifications are satisfied. 
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Fig. 3a. Results of fault detection on eQ , (T1-F4). 
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Fig. 3b. Control results, with scenario T1-F4. 
 
In the case of scenario T2-F8, Figure 4a presents the 
results of fault detection where also the hybrid 
strategy detects the fault without any delay. All 
control specifications are satisfied, Figure 4b. 
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Fig. 5a. Results of fault detection on geN , (T3-F7). 
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Fig. 5b. Control results, with scenario T3-F7. 



  

In the case of scenario T3-F7, Figure 5a presents the 
results of fault detection where the hybrid strategy 
detects the fault with acceptable delay. Again all 
control specifications are satisfied, Figure 5b. 
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Figure 6 presents the results of standard case where 
model and measured-estimated values changes take 
place (T5-F2). All the specifications are satisfied. 
However, some works remain in order to consider 
evolution of models and changes from measured to 
estimated values as a result of an optimization pro-
cess taking into account additional binary variables. 
Finally, Figure 7 presents collective results of differ-
rent transients and fault scenarios. 
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Fig. 7. geN  level control, for different transients. 
 
Results presented here and other tests not shown due 
to space limitation provide the following remarks. 
The estimation strategy succeeds in detecting the fast 
drift fault without any delay and the slow drift fault 
with acceptable delay; this delay depends on the fault 
value, the weighting factors and on the estimation 
horizon (Thomas, et al., 2003). The fault detection on 

geN  is relatively simple as there are 3 sensors, only 
one of them could be subject to any fault. Also the 
fault detection on eQ  is simple, as the eQ  value 
directly depends on the control signal. The detection 
of faults on vQ  is more difficult (in the case of slow 
drift), as it is considered in the model as an input 
disturbance. The fault on glN  is the most difficult to 

detect (for the slow drift fault) as there is only one 
sensor available. The last two cases can be improved 
increasing the estimation horizon. 
 
The control strategy succeeds in satisfying all the SG 
specifications, except in the two following cases: 
1- For scenario T6 the error is little more than 10% 

(and less than 12%), that is actually not because 
of the fault effect, but because of the big step 
value on vQ , about 35%. 

2- In the case of slow drift on glN , the value of 
geN  strongly depends on the glN  value, which 

leads the error on geN  to a big value before 
detecting the fault occurrence. To avoid this 
problem a longer estimation horizon for glN  is 
required to detect the fault earlier. 

 
 

5. CONCLUSION 
 
This paper presents a strategy applied to the water 
level control of a steam generator, combining state 
estimation for fault detection and predictive control 
within a unique framework of a hybrid system under 
the MLD form. This strategy enables to ensure 
almost all fault detection and control specifications. 
Due to the particular structure of the studied system, 
improvements in the problem formulation make real 
time implementation possible. Future work may 
consider including additional binary variables taking 
into account in the optimization phase commutations 
of models and measurement features. 
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