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1. INTRODUCTION

In this paper, the problem of minimax estimation
by the mean-square criterion is studied for lin-
ear multivariate statistically indeterminate mod-
els with both stochastic and deterministic un-
certain parameters and disturbances. Following
(Kurzhanski and Tanaka, 1989), such type of sys-
tems will be referred to as ones with mixed un-
certainty. During the recent period of time, very
broad class of statistically indeterminate models
has been studied using the minimax approach.
Nevertheless, the majority of the models under
consideration can be divided into two classes:

a) the models involving only random variables
with partially known nondegenerate distributions
(Verdú and Poor, 1984; Anan’ev, 1995; Soloviov,
2000);
b) the models with uncertain bounded nonran-
dom parameters and disturbances (Kurzhanski
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and Tanaka, 1989; El Ghaoui and Lebret, 1997;
Matasov, 1998).

Under stochastic uncertainty, one of the major
techniques for constructing minimax estimates is
the method of dual optimization. This straightfor-
ward and efficient algorithm consists of two steps:

1) to find the least favorable joint distribution of
the random parameters;
2) to compute the optimal estimate designed for
the obtained worst-case characteristics.

The necessary and sufficient conditions for the
method described above to lead to the min-
imax estimate are obtained in (Pankov and
Siemenikhin, 2000). The standard situation in
which such conditions are fulfilled is provided by
so-called regular models (Verdú and Poor, 1984).
However, deterministic models and ones with
mixed uncertainty are singular, since they contain
singular probability distributions.

The main contribution of this paper is to extend
the approach of dual optimization to singular lin-



ear multivariate models with mixed uncertainty.
This aim is achieved by means of the Tikhonov
regularization techniques (Tikhonov and Arsenin,
1977; Hanke and Hansen, 1993; El Ghaoui and
Lebret, 1997; Pankov and Siemenikhin, 2002).
Combination of the methods of dual optimization
and Tikhonov regularization provides a unified
approach to designing efficient algorithms of min-
imax robust identification for linear multivariate
systems with mixed a priori uncertainty.

2. STATISTICALLY INDETERMINATE
MULTIVARIATE MODEL

The following notation will be used: ‖x‖ =
√
x>x,

x ∈ Rm; O, I are the null and identity matrices,
resp.; ker[A], im[A], tr[A], σ[A], ‖A‖, and ‖A‖2
are the kernel, image, trace, spectrum, spectral
norm, and Euclidean norm of a matrix A, resp.;

diag[A,B] =

(
A O
O B

)
; A+ is the Moor–Penrose

pseudoinverse; A > O (A ≥ O) means that the
matrix A is symmetric positively (semi)definite.

Consider the following statistically indeterminate
linear multivariate model:

{
x = Φ0ρ0 +Φρ1,

y = Ψ0ρ0 +Ψρ1,
(1)

where x ∈ Rm is the vector to be estimated given
the observation vector y ∈ Rn; ρ = col[ρ0, ρ1] is
the vector of parameters and disturbances; Φ0, Φ,
Ψ0, and Ψ are some given matrices.

Concerning the subvector ρ0 ∈ Rp there is no
a priori information, while ρ1 ∈ Rq is supposed
to have partially known moment characteristics:
E{ρ1} ∈ M, cov{ρ1} ∈ R. The set M is compact
and centrally symmetric and R is a compact set
of symmetric positive-semidefinite matrices.

Let Pρ denote the probability distribution of the
vector ρ. The stated above assumptions mean that
Pρ ∈ P, where P is the set of feasible distributions:

P = {Pρ : ρ = col[ρ0, ρ1], E
{
‖ρ‖2

}
<∞,

E{ρ1} ∈ M, cov{ρ1} ∈ R}. (2)

Note that partitioning the model parameters into
the structural and disturbing ones can be done ex-
plicitly by an appropriate choosing of the matrices
Φ0, Φ, Ψ0, Ψ. Furthermore, all probability distri-
butions are allowed to be singular. This makes it
possible not to separate the random and determin-
istic variables. Thus, model (1) is the most general
one and the majority of linear observation models
can be considered as particular cases of (1).

3. MINIMAX ESTIMATION PROBLEM

Consider a linear estimate x̃ = Fy, F ∈ F ,
of x given the vector y, where F ⊆ Rm×n is
some prespecified set of estimators. Then, x̃ = Fy
will be referred to as an admissible estimate. The
accuracy of x̃ is measured by the m.s.e. criterion:

D(F,Pρ) = E
{
‖Fy − x‖2

}
, Pρ ∈ P. (3)

Definition 1. An estimate x̂ = F̂ y is called mini-
max if

F̂ ∈ F̂ = arg min
F∈F

sup
Pρ∈P

D(F,Pρ). (4)

The optimal guaranteed value of the m.s.e. crite-
rion is equal to Ĵ = inf

F∈F
sup

Pρ∈P

D(F,Pρ).

Since (3) depends only on E{ρ} and cov{ρ}, (4)
can be reduced to the following minimax problem:

F̂ ∈ F̂ = arg min
F∈F0

max
K∈K

J(F,K), (5)

where the auxiliary functional

J(F,K) = sup
Pρ

{D(F,Pρ) : E
{
ρ1ρ
>
1

}
= K} (6)

will henceforth be used instead of D(·),
K = co{K : K = µρµ

>
ρ +Rρ, µρ ∈M, Rρ ∈ R}

is the convex hull of the set of matrices E
{
ρ1ρ
>
1

}

such that Pρ ∈ P, and
F0 = {F ∈ F : FΨ0 = Φ0} (7)

is the class of admissible estimators, which are
unbiased w.r.t. ρ0. In what follows, the set F0 is
supposed to be nonempty, convex, and closed.

Problems (4) and (5) are equivalent due to

sup
Pρ∈P

D(F,Pρ) = sup
K∈K

J(F,K) ∀F ∈ Rm×n,

where J(F,K) = tr
[
(FΨ− Φ)K(FΨ− Φ)>

]
if

FΨ0 = Φ0 and J(F,K) = +∞ otherwise.

Specify the regular and singular situations.

Definition 2. The statistically indeterminate
model (1) and the corresponding minimax
estimation problem (4) are regular if

ΨKΨ> > O ∀K ∈ K, (8)

otherwise (1), (4) are singular.

Condition (8) means that any feasible covariance
cov{y} = Ψ cov{ρ1}Ψ> of the observation vector
is a nonsingular matrix.

As it is known (Verdú and Poor, 1984), for sin-
gular observation models there may exist several
minimax estimates. The last makes it reasonable
to introduce the next concept.



Definition 3. The minimax estimate x̂(o) = F̂ (o)y
is called normal if ‖F̂ (o)‖2 ≤ ‖F̂‖2 ∀ F̂ ∈ F̂ .

In other words, F̂ (o) is of the minimal Euclidean
norm over all minimax estimators.

The following theorem describes the main features
of the minimax optimization problem (5).

Theorem 1. Assume ∃K0 ∈ K: ΨK0Ψ
> > O.

1) Then, the set F̂ of minimax estimators is
nonempty, convex, and compact. Moreover

‖F̂‖22 ≤
(√

tr[ΦK0Φ>] +
√
Ĵ
)2

minσ[ΨK0Ψ>]
∀ F̂ ∈ F̂ . (9)

2) There exists a unique normal minimax estima-
tor F̂ (o).
3) The following duality relation holds:

Ĵ = min
F∈F0

max
K∈K

J(F,K) = max
K∈K

inf
F∈F0

J(F,K). (10)

4) Under the regularity condition (8), the mini-
max estimator F̂ is uniquely determined and can
be found as follows:

{F̂} = arg min
F∈F0

J(F, K̂), (11)

where K̂ is an arbitrary solution to the problem

K̂ ∈ argmax
K∈K

J(K), J(K) = inf
F∈F0

J(F,K). (12)

The next definition is motivated by equality (10).

Definition 4. The maximin problem (12) is called
dual w.r.t. the minimax one (4).

Thus, K̂ describes a least favorable combination
of the moment characteristics involved in (1).
Nevertheless, in general, a distribution Pρ ∈ P
such that K̂ = ΨE

{
ρ1ρ

T
1

}
Ψ> may not exist.

The third assertion of Theorem 1 means that F̂ is
a minimax estimator and K̂ is a dual solution
iff the pair (F̂ , K̂) forms a saddle point for the
game (J,F0,K): for every F ∈ F0 and K ∈ K
J(F̂ ,K) ≤ J(F̂ , K̂) ≤ J(F, K̂).

The last part of Theorem 1 describes the way of
finding minimax estimates using the dual opti-
mization approach. According to the last, the min-
imax estimate is sought as a solution of the linear-
optimal estimation problem (11) by the m.s.e. cri-
terion with the least favorable moment character-
istics (12). For standard classes of estimators, the
optimal estimate x̂ = F̂ y and the dual functional
J(·) have the explicit representation.

So, in the regular case, the method of dual opti-
mization can be directly applied to finding the
minimax estimate. In the singular case, algo-
rithm (11)–(12) yields the minimax estimate if

ΨK̂Ψ> > O or im[ΨKΨ>] ⊆ im[ΨK̂Ψ>] for any
K ∈ K (Pankov and Siemenikhin, 2000).

It should be noted that if the uncertainty set K
contains a maximal element K (i.e., K ≤ K for
all K ∈ K), then the solution of (12) is trivial:
K̂ = K, whence (11) is the minimax estimator.

Even if the least favorable matrix K̂ can be
obtained asymptotically, the method of minimax
estimation based on the dual optimization turns
to be valid and possesses the robust property.
Furthermore, the deviation of the approximate
estimator from the minimax one can be majorized
by the computation error of the dual solution.

Theorem 2. Under the regularity condition (8),
given a sequence {Ks} ⊂ K, the estimators {F s}
are supposed to be defined as follows:

{F s} = arg min
F∈F0

J(F,Ks). (13)

Then ‖F s − F̂‖22 ≤ (Ĵ − J(Ks))/ min
K∈K

σ[ΨKΨ>]

for all s and the sequence {F s} converges to the
minimax estimator F̂ whenever lim

s→∞
J(Ks) = Ĵ .

Thus, for finding the dual solution one may use
any numerical procedure for which the conver-
gence w.r.t. J(·) is fulfilled.
The iterative algorithm presented below possesses
the desired property.

Algorithm 1. 1) Take K0 ∈ K and put s = 0.
2) Solve the quadratic minimization problem (13).
3) Solve the following problem of linear program-

ming: K̃s ∈ argmax
K∈K

J(F s,K).

4) If max
K∈K

J(F s,K) = J(F s,Ks), put F̂ = F s and

K̂ = Ks and terminate the iterative process.
5) Solve the one-dimensional maximization prob-

lem γs ∈ argmax
γ∈[0,1]

J((1− γ)Ks + γK̃s).

6) PutKs+1 = (1−γs)Ks+γsK̃s, increase s by 1,
and go to step 2.

The convergence of Algorithm 1 is stated in the
following theorem.

Theorem 3. Let the regularity condition (8)
be fulfilled and the sequences {F s}, {Ks} be
generated by Algorithm 1. Then, {F s} converges
to the minimax estimator F̂ and {Ks} converges

to the set K̂ = argmax
K∈K

J(K) of dual solutions, i.e.,

lim
s→∞

‖F s − F̂‖2 = 0, lim
s→∞

inf
K̂∈K̂

‖Ks − K̂‖ = 0.

Furthermore, the convergence holds also w.r.t.
the functionals J(F ) = max

K∈K
J(F,K) and J(K):

lim
s→∞

J(F s) = lim
s→∞

J(Ks) = Ĵ .



4. MINIMAX ESTIMATION FOR SINGULAR
MODELS

In this section, the Tikhonov regularization
method will be applied to the singular case of the
minimax problem (5).

Introduce the regularized criterion

Jε(F,K) = J(F,K) + ε ‖F‖22, ε > 0. (14)

Then, the regularized minimax problem has the
form

F̂ ε ∈ arg min
F∈F0

max
K∈K

Jε(F,K), (15)

where F̂ ε is said to be the regularized minimax
estimator. The optimal guaranteed value of J ε(·)
is equal to Ĵε = min

F∈F0

max
K∈K

Jε(F,K).

Note that problem (15) is regular, since it corre-
sponds to the following regular observation model:

{
x = Φ0ρ0 +Φρ1,

yε = Ψ0ρ0 +Ψρ1 + εη,
(16)

where Pρ ∈ P and the random vector η is sup-
posed to be normalized (E{η} = 0, cov{η} = I)
and independent of ρ. Indeed, any feasible covari-
ance of the observation vector is nonsingular:

cov{yε} = Ψ cov{ρ1}Ψ> + εI > O. (17)

Since problem (15) is regular, one can use the
method of dual optimization. To this end, intro-
duce the functional Jε(K) = inf

F∈F0

Jε(F,K) and

consider the regularized dual problem

K̂ε ∈ argmax
K∈K

Jε(K). (18)

The following result explains how to obtain a min-
imax estimate using the regularization technique.

Theorem 4. Under the conditions of Theorem 1,
the following assertions are valid:

1) The regularized minimax estimator F̂ ε can
be found in the form {F̂ ε} = argmin

F∈F0

Jε(F, K̂ε),

where K̂ε is an arbitrary solution of (18).
2) {F̂ ε} converges to the normal minimax estima-
tor F̂ (o): ‖F̂ ε − F̂ (o)‖2 → 0 as ε ↓ 0.
3) The optimal guaranteed values of the original
and regularized criteria satisfy the following rela-
tion: Ĵ ≤ Ĵε ≤ Ĵ + ε‖F̂ (o)‖2 ∀ ε > 0.

Note that the minimax solution F̂ ε can be ob-
tained using the iterative algorithm described in
Section 3. However, if the convergence provided
by Algorithm 1 is not finite, the error of com-
puting F̂ ε may be significant. This may lead
to the unstable behavior of the sequence {F̂ ε}.
In order to overcome this obstacle one can also

use the method of Tikhonov regularization of ill-
posed optimization problems (Tikhonov and Ars-
enin, 1977).

The theorem below shows how to compute the
minimax estimator in a stable manner.

Theorem 5. Under the conditions of Theorem 1,
suppose the following assumptions to be fulfilled:

a) the parameter εν tends to zero as ν →∞;
b) {Kν} is a given sequence such thatKν ∈ K and
δν = Ĵεν − Jεν (Kν)→ 0 as ν →∞;
c) {Fν} = argmin

F∈F0

Jεν (F,Kν), ν = 1, 2, . . .

Then,

1) lim
ν→∞

inf
F̂∈F̂

‖Fν − F̂‖2 = 0 if sup
ν

δν/ε
3
ν <∞;

2) lim
ν→∞

‖Fν − F̂ (o)‖2 = 0 if lim
ν→∞

δν/ε
3
ν = 0.

In the both cases lim
ν→∞

J(Fν) = Ĵ .

The first part of Theorem 5 describes the situa-
tion, when one can claim the convergence of {Fν}
to the set F̂ of minimax estimators. The second
part provides the sufficient condition for {Fν} to
converge to the normal minimax estimator F̂ (o).

5. BASIC PARTICULAR CASES

Suppose that there are no a priori constraints
on estimators, i.e., any linear estimate x̃ = Fy,
F ∈ Rm×n, is assumed to be admissible. Thus,

F = Rm×n and F0 = {F : FΨ0 = Φ0}. (19)

The assumption F0 6= ∅ is equivalent to the iden-
tifiability condition:

Φ0 = Φ0Ψ
+
0 Ψ0, or ker[Ψ0] ⊆ ker[Φ0]. (20)

Consider the linear-optimal estimation problem

arg min
F∈F0

J(F,K), K ∈ K. (21)

Under the notation Kx = ΦKΦ>, Kxy = ΦKΨ>,
Ky = ΨKΨ>, one can claim that if Ky > O, then

F̃ (Kxy,Ky) = KxyK
−1
y +

(Φ0 −KxyK
−1
y Ψ0)

(
Ψ>0 K

−1
y Ψ0

)+
Ψ>0 K

−1
y

is the unique solution of (21) and

J(Kx,Kxy,Ky) = tr
[
Kx −KxyK

−1
y K>xy +

(Φ0 −KxyK
−1
y Ψ0)

(
Ψ>0 K

−1
y Ψ0

)+ ×
(Φ0 −KxyK

−1
y Ψ0)

>
]

is the minimum of (21).

Theorem 6. Under the previous notation, suppose
that (19) and (20) are fulfilled.



1) Then, the sequence of estimators

F̂ ε = F̃ (K̂ε
xy, K̂

ε
y + εI) (22)

converges to the normal minimax estimator F̂ (o)

as ε ↓ 0 if K̂ε
xy = ΦK̂εΨ>, K̂ε

y = ΨK̂εΨ>, and

K̂ε ∈ argmax
K∈K

J(Kx,Kxy,Ky + εI). (23)

2) Let the regularity condition (8) be fulfilled.

Then, F̂ = F̃ (K̂xy, K̂y) is the minimax estimator

if K̂xy = ΦK̂Ψ>, K̂y = ΨK̂Ψ>, and

K̂ ∈ argmax
K∈K

J(Kx,Kxy,Ky). (24)

Example 5.1. (Regression with unbounded param-
eters). Consider the following linear regression
model: {

x = Aθ,

y = Bθ + ξ,
(25)

where θ ∈ Rp is the a priori unbounded nonran-
dom vector and ξ ∈ Rn is the random observa-
tion noise with zero mean and covariance R ∈ Rξ,
where Rξ is a compact set of positive semidefinite
matrices. A and B are some given matrices.

Model (25) is widely used in applications and
is a particular case of the general model (1),
since the probability distribution Pρ of the vector
ρ = col[θ, ξ] belongs to the set

P = {Pρ : ρ = col[θ, ξ], E{θ} = θ ∈ Rp,

E{ξ} = 0, cov{ξ} ∈ Rξ}. (26)

Corollary 1. Let F = Rm×n and AB+B = A.

Denote F̃ (R) = A
(
B>R−1B

)+
B>R−1 and

J(R) = tr
[
A
(
B>R−1B

)+
A>
]
.

1) Then, the sequence of F̃ (R̂ε + εI) converges
to the normal minimax estimator as ε ↓ 0 if
R̂ε ∈ argmax

R∈Rξ

J(R+ εI).

2) Let R > O for all R ∈ Rξ. Then, the estimator

F̃ (R̂) is minimax if R̂ ∈ argmax
R∈Rξ

J(R).

Since F̃ (R̂) is a least-squares estimator, the re-
sult stated in Corollary 1 can be treated as the
minimax version of the Gauss–Markov theorem.

Example 5.2. (Regression with bounded parame-
ters). Here, the observation model (25) is consid-
ered under the same assumptions except for the
conditions on θ: θ is now supposed to be a priori
bounded, i.e., θ ∈ Θ, where Θ is a given centrally
symmetric compact subset of Rp. Hence,

P = {Pρ : ρ = col[θ, ξ], E{θ} = θ ∈ Θ,

E{ξ} = 0, cov{ξ} ∈ Rξ} (27)

is the class of feasible distributions.

Corollary 2. Let (27) and F0 = F = Rm×n hold.

Denote F̃ (T,R) = ATB>(BTB> +R)−1, and
J(T,R)= tr

[
A(T − TB>(BTB>+R)−1BT )A>

]
,

where T ∈ T , R ∈ Rξ, and T = co{θθ>: θ ∈ Θ}.

1) The sequence of estimators F̃ (T̂ ε, R̂ε + εI)
converges to the normal minimax estimator as
ε ↓ 0 if (T̂ ε, R̂ε) ∈ argmax

T∈T ,R∈Rξ

J(T,R+ εI).

2) Let R > O for all R ∈ Rξ. The estimator

F̃ (T̂ , R̂) is minimax if (T̂ , R̂) ∈ argmax
T∈T ,R∈Rξ

J(T,R).

Example 5.3. (Purely stochastic observation
model). Consider the problem of minimax estima-
tion under the following assumptions:

E{ρ} = 0 and cov{ρ} ∈ R, (28)

where ρ = col[x, y] and R is a given con-
vex compact set of positive-semidefinite matrices

R =

(
Rx Rxy

Ryx Ry

)
. Then, the observation model is

called purely stochastic, since it does not contain
any indeterminate nonrandom variables.

Corollary 3. Suppose that F = Rm×n and the
set P is defined by condition (28). Denote
J(Rx, Rxy, Ry) = tr

[
Rx −RxyR

−1
y R>xy

]
.

1) The sequence of matrices R̂ε
xy(R̂

ε
y + εI)−1 con-

verges to the normal minimax estimator as ε ↓ 0
if R̂ε ∈ argmax

R∈R

J(Rx, Rxy, Ry + εI).

2) Let Ry > O ∀R ∈ R. The estimator R̂xyR̂
−1
y is

minimax if R̂ ∈ argmax
R∈R

J(Rx, Rxy, Ry).

The result of Corollary 3 can be strengthened
as follows. The linear-minimax estimate F̂ and
the Gaussian distribution P̂ρ with zero mean and

covariance R̂ form a saddle point for the game
(D,B,P), i.e., D(F̂ ,Pρ) ≤ D(F̂ , P̂ρ) ≤ D(F, P̂ρ)
for all F ∈ B and Pρ ∈ P, where B is the class
of all Borelean transformation.

The last makes it possible to claim that the linear-
minimax estimate is also minimax over the class
of all nonlinear transformations and the Gaussian
distribution is least favorable if its covariance is
a solution of the dual problem. So, the results
above form the regularized minimax version of the
theorem on normal correlation.

6. MINIMAX FILTERING

Consider the problem of minimax filtering for the
following discrete-time statistically indeterminate
dynamic system (Verdú and Poor, 1984):
{
xt = ϕtθt, θt = atθt−1 + btξt, θ0 = γ,

yt = Atθt +Btξt, t = 1, . . . , N,
(29)



where {xt} is the m× 1 process to be estimated
given the n× 1 observation process {yt}; θt is
the p× 1 state vector; {ξt} is the zero-mean
q × 1 white noise uncorrelated with the zero-mean
initial state γ; at, bt, At, Bt, and ϕt are some
known matrices.

The uncertainty in covariances Rγ = cov{γ} and
Rt = cov{ξt} is described by the two alternatives:

a) Rγ ∈ Rγ , R1 = . . . = RN ∈ Rξ, (30)

b) Rγ ∈ Rγ , Rt ∈ Rξ, t = 1, . . . , N, (31)

where Rγ and Rξ are prespecified convex and
compact sets of positive-semidefinite matrices.

Cases a) and b) define the set R of feasible co-
variances R = diag[Rγ , R1, . . . , RN ] of the vector
ρ = col[γ, ξ1, . . . , ξN ].

Given the observation process y, the linear esti-
mate x̃ = Fy is an admissible filter iff x̃ is non-

anticipative, namely, x̃t =
t∑

s=1
Ftsys, Fts ∈ Rm×n.

In other words, the vector xt is to be estimated
given the observations y(t) = col[y1, . . . , yt] that
are available up to the current moment t. Thus,
the set F of admissible estimators consists of the
block matrices F = {Fts}t,s=1,...,N of the lower
triangle form: Fts = O for all t < s.

As before, the accuracy of estimates x̃ = Fy,
F ∈ F , is measured by the m.s.e. criterion of
the integral form: D(F,Pρ) = E

{
‖Fy − x‖2

}
=

N∑
t=1

E
{
‖x̃t − xt‖2

}
. The last does not lead to loss

of generality, since the necessary weight matrices
for each value of the process can be took into
account by an appropriate modification of the
matrices {ϕt}.

Definition 5. A filter x̂ = F̂ y is called minimax if

F̂ ∈ arg min
F∈F

sup
Pρ∈P

D(F,Pρ), (32)

where F is the class of linear non-anticipative
estimators and P is defined by (29)–(31).

Since the finite horizon discrete-time linear sys-
tem (29) can be reduced to the multivariate ob-
servation model (1), the problem of minimax fil-
tering (32) can be treated as a particular case of
the general problem of minimax estimation (4).
Therefore, all the results obtained in Sections 3, 4
can be applied to designing the minimax filter.

Note that the regularity condition (33) takes the
following form: ∀ t = 1, . . . , N

St(R) = [Atbt +Bt]Rt[Atbt +Bt]
> > O. (33)

In particular, the last is fulfilled whenever the
observation noise wt = Btξt is nondegenerate and
uncorrelated with the state noise vt = btξt.

If (33) does not hold, then the observation
model (29) is singular. In this case, one should
consider the regularized version of (29) with
the observation process yεt = yt + εηt, where
{ηt} is a standard white noise (i.e., E{ηt} = 0,
cov{ηt} = I) uncorrelated with γ and {ξt}.

Theorem 7. Given the observation process (29)
and R = diag[Rγ , R1, . . . , RN ], suppose that the
filter {x̃εt (R)} and the error covariance {P ε

t (R)}
satisfy the Kalman equations with coefficients as
ones for the regularized observation system. Then,
the sequence of regularized Kalman filters x̃ε(R̂ε)
converges to the normal minimax filter as ε ↓ 0 if

R̂ε ∈ argmax
R∈R

N∑

t=1

tr
[
ϕtP

ε
t (R)ϕ>t

]
.

Note that the normal minimax filter has the
recursive structure even if it does not coincide
with any Kalman filter.
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