
A SYSTEM DECOMPOSITION FOR SENSOR

LOCATION IN FAULT DETECTION AND

ISOLATION

Christian Commault ∗ Jean-Michel Dion ∗

Sameh Yacoub Agha ∗

∗ Laboratoire d’Automatique de Grenoble. LAG-CNRS,

ENSIEG-INPG BP 46

38402 Saint Martin d’Hères,

France.

Email: {Christian.Commault,Jean-

Michel.Dion,Sameh.Yacoub-Agha}@inpg.fr

Abstract: In this paper we consider linear systems with faults. We present a new
system decomposition well suited for sensor location in the Fault Detection and
Isolation problem. We deal with this problem when the system under consideration
is structured, that is, the entries of the system matrices are either fixed zeros
or free parameters. To such structured systems one can associate a graph. We
present a structural decomposition of this graph which extends previous results.
This decomposition is based on the analysis of particular separators. This finer
structural decomposition allows to characterize all the solutions in terms of
location of possible additional sensors.Copyright c©2005 IFAC.
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1. INTRODUCTION

In this paper we consider linear systems with
faults and we present a new system decomposition
based on structural analysis which is well suited
for sensor location in the Fault Detection and
Isolation problem (FDI).
The FDI problem has received considerable at-
tention in the past ten years (Chen and Pat-
ton, 1999; Frank, 1996). We are interested in
building some auxiliary signals called residuals
and obtaining a transfer from faults to residuals
with a diagonal structure. When this FDI problem
is not solvable with the existing sensors we look for
a solution using a minimal number of additional
sensors
We consider for this sensor location problem in-
trinsic solvability conditions depending on the
internal structure of the system and not on the

specific values of the parameters. An interesting
tool for this purpose is the notion of structured
system (Lin, 1974; Dion et al., 2003). Solvability
conditions were given recently in terms of the
graph that can be associated in a natural way to a
structured system (Commault et al., 2002; Com-
mault and Dion, 2003).
Using iteratively the Ford and Fulkerson algo-
rithm in a specific way on the system’s graph
we get a sequence of separators of increasing size
which lead to a new graph-based system decompo-
sition which is the main contribution of this paper.
This decomposition is an extension of previous
results (Murota, 1987; van der Woude, 2000; Com-
mault and Dion, 2003) which allows to charac-
terize the solutions for the location of possible
additional sensors.



The outline of this paper is as follows. The prob-
lem is formulated in section 2. The linear struc-
tured systems are presented in section 3. In section
4 we introduce the notion of separator and give
the system decomposition defined in an iterative
way. In section 5 we present the application of this
decomposition to the sensor location in the FDI
problem. In section 6 we present an illustrative
example which emphasizes the interest of this
decomposition for our sensor location problem.
Some concluding remarks end the paper.

2. PROBLEM FORMULATION

2.1 Observer-based FDI problem

Let us consider the following linear time-invariant
system :

Σ

{

ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) +Mf(t)

(1)

where x(t) ∈ R
n is the state vector, f(t) ∈ R

r the
fault vector and y(t) ∈ R

p the measured output
vector. A,C,L andM are matrices of appropriate
dimensions.
Note that the control input effects are not consid-
ered here as, for any observer-based FDI problem,
it is well known that these can be taken into
account in the observer structure without loss of
generality.
A dedicated residual set is designed using a bank
of r observers for system (1), according to the ded-
icated observer scheme (Chen and Patton, 1999).
Each residual will be designed to be sensitive to
a single fault while remaining insensitive to the
other faults.
The ith observer of this bank of r observers is
designed for a system of type (1) as follows:

˙̂x
i
(t) = Ax̂i(t) +Ki(y(t)− Cx̂i(t)) (2)

where x̂i(t) ∈ R
n is the state of the ith observer,

Ki is the observer gain to be designed such that
x̂i(t) asymptotically converges to x(t), when no
fault is considered.
The residuals are defined as :

ri(t) = Qi(y(t)− Cx̂i(t)), for i = 1, . . . , r (3)

where Qi is a 1× p matrix.

Definition 1. The bank of observers-based FDI
problem consists in finding, if possible, matrices
Ki and Qi, such that, for i = 1, 2, . . . , r, A−KiC
is stable, and the fault to residual transfer matrix
is non zero, proper and diagonal, i.e. the transfer
form the faults to the residuals has the form

r(s) =











t11(s) 0 · · · 0
0 t22(s) · · · 0
...

...
. . .

...
0 0 · · · trr(s)











f(s) (4)

where tii(s) 6= 0 for i = 1, 2, . . . , r.

The solvability conditions for this problem will be
detailed further. These conditions express in par-
ticular that there must exist a sufficient number of
measured outputs to be able to detect and isolate
the faults.

2.2 Sensor location for FDI

Consider again the system (1). In general the
above defined FDI problem has no solution using
only the existing sensors on the system. In this
case we consider new sensors which could be
implemented on the system. We assume that these
new sensors are fault free. Define the new output
vector z which collects the new measurements:

z(t) = Hx(t) + Pf(t), (5)

z(t) ∈ R
q, where zi(t) is the measure obtained

from the i-th additional sensor.
Define now the composite system denoted by Σc.

Σc







ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) +Mf(t)
z(t) = Hx(t) + Pf(t)

(6)

In the next sections we will consider the following
sensor location problem for FDI: in which parts
of the system should we implement additional
sensors in such a way that the FDI problem
is solvable on the composite system? If these
additional sensors are necessary we look for an
implementation which minimizes their number,
and gives results concerning the additional sensors
location.

Our study will be achieved in the framework of
structured systems that we introduce now.

3. LINEAR STRUCTURED SYSTEMS

In this part we recall some definitions and results
on linear structured systems. More details can be
found in (Dion et al., 2003).
We consider linear systems as described in (1), but
with parameterized entries and denoted by ΣΛ

ΣΛ

{

ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) +Mf(t)

(7)

This system is called a linear structured systems if

the entries of the composite matrix J =

[

A L
C M

]



are either fixed zeros or independent parame-
ters (not related by algebraic equations). Λ =
{λ1, λ2, . . . , λk} denotes the set of independent
parameters of the composite matrix J . For the
sake of simplicity the dependence of the system
matrices on Λ will not be made explicit in the
notation. A structured system represents a large
class of parameter dependent linear systems. The
structure is given by the location of the fixed zero
entries of J .
For such systems one can study generic properties
i.e. properties which are true for almost all values
of the parameters collected in Λ (Murota, 1987;
Reinschke, 1988). More precisely a property is said
to be generic (or structural) if it is true for all
values of the parameters (i.e. any Λ ∈ R

k) outside
a proper algebraic variety of the parameter space.
A directed graph G(ΣΛ) = (Z,W ) can be easily
associated to the structured system ΣΛ of type (7)

where the matrix

[

A L
C M

]

is structured:

• the vertex set is Z = F ∪ X ∪ Y where
F , X and Y are the fault, state and output
sets given by {f1, f2, . . . , fr}, {x1, x2, . . . , xn} and
{y1, y2, . . . , yp} respectively,
• the arc set is W = {(fi, xj)|Lji 6= 0} ∪
{(xi, xj)|Aji 6= 0} ∪ {(xi, yj)|Cji 6= 0} ∪ {(fi, yj)|
Mji 6= 0}, where Aji (resp. Cji,Lji,Mji) denotes
the entry (j, i) of the matrix A (resp. C,L,M).
Moreover, recall that a directed path in G(ΣΛ)
from a vertex iµ0 to a vertex iµq is a sequence of
arcs (iµ0, iµ1), (iµ1, iµ2), . . . , (iµq−1, iµq) such that
iµt ∈ Z for t = 0, 1, . . . , q and (iµt−1, iµt) ∈W for
t = 1, 2, . . . , q. Moreover, if iµ0 ∈ F and, iµq ∈ Y ,
P is called a fault-output path. A path which is
such that iµ0 = iµq is called a circuit. If i0 ∈ V1
and, il ∈ V2, where V1 and V2 are two subsets of
Z, P is called a V1-V2 path. Moreover if the only
vertices of P which belong to V1 ∪ V2 are i0 and
il, P is called a direct V1-V2 path.
A set of paths with no common vertex is said to
be vertex disjoint. A V1-V2 linking of size k is a
set of k vertex disjoint V1-V2 paths. A linking is
maximal when k is maximal.
All the previous definitions can be extended to a
composite structured system Σc

Λ with associated
graph G(Σc

Λ) where Σ
c
Λ is defined as

Σc
Λ







ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) +Mf(t)
z(t) = Hx(t) + Pf(t)

(8)

As a first example of these results, recall the graph
characterization of the structural observability,
which will be useful later (Lin, 1974; Murota,
1987).

Proposition 2. Let ΣΛ be the linear structured
system defined by (7) with its associated graph

G(ΣΛ). The system (in fact the pair (C,A)) is
structurally observable if and only if:

• there exists a state-output path starting from
any state vertex in X,

• there exists a set of vertex disjoint circuits
and state-output paths which cover all state
vertices.

Consider now the system ΣΛ defined in (7) whose
transfer matrix is TΛ(s) = C(sI −A)−1L+M .
We can calculate the generic rank of TΛ(s) by
using the following result (van der Woude, 1991).

Theorem 3. Let ΣΛ be the linear structured sys-
tem defined by (7) with its associated graph
G(ΣΛ). The generic rank of TΛ(s) is equal to the
size of a maximal fault-output linking in G(ΣΛ).

Give now the result concerning the diagonal FDI
problem by using a bank of observers which was
stated first in (Commault et al., 2002).

Theorem 4. Consider the structurally observable
system with r faults ΣΛ as defined in (7) and the
associated graph G(ΣΛ). The bank of observers-
based diagonal FDI problem of Definition 1, is
generically solvable if and only if:

k = r (9)

where k is the size of a maximal linking in G(ΣΛ)

Example 1 : Consider the following structured
system ΣΛ which is of type (7) with two faults
and one output:

A =

[

0 0
λ1 0

]

, L =

[

λ2 0
0 λ3

]

,

C =
[

0 λ4
]

,M =

[

0 0
0 0

]

The non zero entries of these matrices are the
free parameters Λ = (λ1, . . . , λ4). The associated
graph G(ΣΛ) is given in Figure ?? It is clear that

Fig. 1. Graph G(ΣΛ) of example 1

no solution for the FDI problem exists in our



example because the condition (9) is not satisfied,
k = 1 < r = 2.
By measuring the state vertex x1 for example with
a new additional sensor, we will have k = 2 = r
and the FDI problem will become solvable.

4. SYSTEM DECOMPOSITION

In this section we present a system decomposi-
tion based on an ordered sequence of separators.
This is a new decomposition for the inconsistent
parts in the M-decomposition of a system graph
different from the one given in (Murota, 1987). It
refines other decompositions presented in (van der
Woude, 2000; Commault and Dion, 2003).

4.1 Basic notions

Most of the basic material of this subsection is
based on (van der Woude, 2000). First consider
again the graph G(ΣΛ) = (Z,W ) of a structured
system of type (7) with vertex set Z and edge set
W . A separator S is a set of vertices such that
any fault-output path has at least one vertex in
S. Separators with a minimal number of vertices
are called minimal. A classical result is that the
minimal size of a separator is the maximal size of a
fault-output linking. The set of essential vertices
Zess is the set of vertices which belong to any
maximal size linking. Construct now the set of
vertices which contains for any fault-output path
the first vertex which is in Zess, call this set S

∗. It
can be shown that S∗ is a minimal separator. S∗ is
called the minimal input separator. S∗ is indeed
the first bottleneck between faults and outputs.
S∗ may contain fault, state and output vertices.
Using S∗ we can reformulate Theorem 4 as fol-
lows.

Proposition 5. Consider the structurally observ-
able system with r faults ΣΛ as defined in (7)
and the associated graph G(ΣΛ). The bank of
observers-based diagonal FDI problem of Defi-
nition 1, is generically solvable if and only if:
S∗ = F .

4.2 Minimal input separator and the maximal

flow problem

It is well known that the maximal size of a fault-
output linking is closely related to the max flow-
min cut problem in an auxiliary graph. The aux-
iliary graph of G(ΣΛ) is denoted Ga(ΣΛ) and
defined as follows. We split each fault, state and
output vertex v of G(ΣΛ) in two vertices v

′ and
v′′ of Ga(ΣΛ) with an edge (v

′, v′′) connecting
them of capacity one. Each edge of the form (v, w)

in G(ΣΛ) is transformed in an edge (v
′′, w′) in

Ga(ΣΛ). We add then two vertices, a source s+

with an edge from this source to all the fault
vertices f ′i , and a sink s− with an edge from the
output vertices y′′j to this sink. The edges whose
capacities have not been defined have an infinite
capacity. Recall that a flow is a real number f(e)
associated with each edge e such that in each
vertex (except s+ and s−) the first Kirchoff’s
law is satisfied i.e. the sum of the flows on the
incoming edges is equal to the sum of the flows
on the outcoming edges. Moreover the flows must
satisfy the capacity constraints i.e. on each edge
0 ≤ f(e) ≤ c(e) where f(e) is the flow on the edge
e and c(e) is the capacity of the edge. The flow
is maximal when the total outcoming flow from
s+ (which is equal to the total incoming flow in
s−) is maximal. A cut is defined by a partition
of the vertex set in two sets Z = Z+ ∪ Z− where
s+ ∈ Z+ and s− ∈ Z−, the capacity of a cut is the
sum of the capacities of edges with begin vertex
in Z+ and end vertex in Z−.
We have the following result, see (Ford and Fulk-
erson, 1962; Yamada, 1988; Murota, 1987; Hov-
elaque et al., 1996), which provides us with an
efficient way to get the minimal input separator.

Theorem 6. The size of a maximal fault-output
linking in G(ΣΛ) is the value of the maximal flow
in Ga(ΣΛ). The minimal input separator S∗ of
G(ΣΛ) is given by the minimal cut obtained by
the Ford and Fulkerson algorithm in Ga(ΣΛ).

4.3 Reduced system

The reduced system ΣRΛ is a structured sys-
tem defined by its graph G(ΣRΛ) with input set
FR, output set YR, state set XR where FR =
F/(F

⋂

S∗), YR = S∗/(F
⋂

S∗) and XR is the set
of state vertices in any direct fault-output path
from FR to YR. The set of edges corresponds to
the edges in any direct path from FR to YR. Notice
that YR is not in general a subset of Y .

Consider now that we can add a new sensor which
provides us with a new measure zj(t) = Hjx(t) +
Pjf(t). We say that a state or input variable is
measured by this sensor if the corresponding entry
in Hj or Pj is a non zero parameter. Denote by k
the size of a maximal fault-output linking in the
graph G(ΣΛ). We get the following result.

Theorem 7. Consider the linear structurally ob-
servable system ΣΛ defined by (7) with its as-
sociated graph G(ΣΛ). Consider the structured

system Σ
(j)
Λ which is obtained from ΣΛ by adding

the additional sensor zj , and its associated graph

G(Σ
(j)
Λ ) obtained from G(ΣΛ) by adding the out-



put vertex zj and incident edges. A maximal fault-

output linking in G(Σ
(j)
Λ ) has size k+1 if and only

if the new sensor measures variables in FR ∪XR.

Measuring variables ”after S∗” is therefore useless
for FDI purpose. It is proved in (Commault and
Dion, 2004) that efficient sensors should measure
variables in the reduced system ΣRΛ. From The-
orem 7 any additional measure on this reduced
system will increase the size of a maximal fault-
output linking in the graph by one unit. In the
next subsection we will decompose the system
and the reduced system in order to determine the
potential size increase of such maximal linkings
when adding several additional measures.

4.4 System decomposition

In this subsection we will use iteratively Theorem
6 to get a set of input separators which will induce
a decomposition of the system well suited for
the sensor location FDI problem. We propose the
following iterative procedure:
Initialisation: i = 1; Ga=Ga(ΣΛ)
DO

• Apply the Ford and Fulkerson algorithm on
Ga and get by Theorem 6 the separator S

∗

i ,
denote ki its cardinality.

• Set to infinity the capacities of the edges of
Ga corresponding to (S

∗

i /S
∗

i ∩ F ) as well as
all the downstream edges (edges on a direct
path from S∗

i to Y ).
• i=i+1.

UNTIL S∗

i = F
This algorithm gives us a sequence of ν separators
S∗

i for i = 1, . . . , ν of respective cardinality ki.
Notice that at the first step S∗

1 = S∗ which allows
to construct the reduced system ΣRΛ. At the last
step S∗

ν = F . These separators induce a natural
decomposition of the system ΣΛ. It is clear from
the construction that ki < ki+1 for i = 1, . . . , ν.
Moreover S∗

i+1 is ”closer to inputs” than S
∗

i , which
means that on any path from F to S∗

i there is a
vertex in S∗

i+1. Considering the separator S
∗

i we

can define the sets T+i for i = 1, . . . , ν.

Remark 8. The separators S∗

i are sets of ki ver-
tices of G(ΣΛ) such that there exists a F -S∗

i

linking of size ki in G(ΣΛ).

Definition 9. Consider the structured system ΣΛ
with its associated graph G(ΣΛ). Consider the
separators S∗

i for i = 1, . . . , ν obtained in a
constructive way as in the previous algorithm.
Define T+i as the set of all vertices in any direct
path from F to S∗

i inG(ΣΛ) except for the vertices
of S∗

i .

The vertices sets T+i are ordered for inclusion.
T+ν ⊂ . . . T+i ⊂ . . . T+1 , and define a decomposi-
tion of G(ΣΛ). It turns out that the vertices of
the reduced system graph G(ΣRΛ) are T

+
1 ∪ S∗.

5. APPLICATION TO THE SENSOR
LOCATION FDI PROBLEM

We will now use the above system decomposition
to tackle the sensor location problem. Using the
algorithm of the subsection 4.4 we obtain our main
Theorem.

Theorem 10. Consider the linear structurally ob-
servable system ΣΛ defined by (7) with its asso-
ciated graph G(ΣΛ). Consider the separators S

∗

i

and the sets T+i defined previously. In any solution
of the FDI problem and for i = 1, . . . , ν there are
at least r − ki additional sensors which measure
vertices of T+i .

Remark 11. The proof can be done using (8) and
computing a maximal size fault-output linking in
the graph G(Σc

Λ) of the composite system Σc
Λ

defined in (8). Notice that for the case i = 1 we
recover the result of (Commault and Dion, 2003).

6. ILLUSTRATIVE EXAMPLE

Example 2: Consider the structured system with
9 faults and 3 outputs whose graph is depicted
in Figure 2. The same graph was studied in an-
other context in (Murota, 1987). The correspond-
ing auxiliary graph is given in Figure 3. Notice
that for simplicity the splitting of vertices has not
been done but instead we indicate for each vertex
the corresponding capacity. For simplicity also the
source and sink with adjacent edges have been
omitted.
The infinite capacities are omitted.
The first step of our algorithm gives S∗

1 = S∗ =
{y1, y2, y3} which shows that the system is in
reduced form. In the same way in a second step,
after the relaxation of capacities we get the sepa-
rator S∗

2 = {f1, f2, x3, x5}. The complete decom-
position with the separators S∗

1 , S
∗

2 , S
∗

3 , S
∗

4 is given
in Figure 4 with S∗

3 = {f1, f2, f3, f4, f5, f6, x7}
and S∗

4 = F . The size of these separators is
k1 = 3, k2 = 4, k3 = 7, k4 = 9.
The application of Theorem 10 to our example
gives a number of interesting informations on the
usefulness of additional sensors for FDI, for exam-
ple:

• Since k1 = 3, r = 9, in any solution of the
FDI problem there are at least 6 additional
sensors which measure vertices of T+1 = F ∪
X.



• For i = 3, since k3 = 7, in any solution
of the FDI problem there are at least 2
additional sensors which measure vertices of
T+3 ={f7, f8, f9}.

x 1
x 3

y 1
x 2

x 6x 5

y 2
x 4

x 7

y 3

f 1
f 2

f 7
f 6
f 5
f 4
f 3

f 9
f 8

Fig. 2. Graph G(ΣΛ) of example 2
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[ 1 ]

[ 1 ]
[ 1 ]
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[ 1 ]
[ 1 ]
[ 1 ]

[ 1 ]

[ 1 ]

[ 1 ]

[ 1 ]

[ 1 ]

[ 1 ]
[ 1 ]
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Fig. 3. The auxiliary graph and the separator S∗

1

x 1

x 3

y 1

x 2

x 6x 5

y 2
x 4

x 7

y 3

f 1
f 2

f 7
f 6
f 5
f 4
f 3

f 9
f 8

S * 4

S * 1

S * 3
S * 2

Fig. 4. System decomposition of example 2

7. CONCLUDING REMARKS

In this paper we have presented a new system
decomposition which is well suited for the sen-
sor location in the Fault Detection and Isolation

problem (FDI).
We have dealt with this problem when the system
under consideration is structured. The proposed
decomposition is based on some new separators
and extends and refines previous works. It can
be obtained easily using standard and efficient
algorithms of combinatorial optimization. It gives
very useful informations on the possible location
of additional sensors.
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