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Abstract: Iron ore sintering having two-layers, with normal coke rate in the top layer and 
lower coke rate in the bottom layer can significantly reduce the overall coke rate and 
improve the sinter quality by producing optimum thermal profile and melting fraction 
throughout the bed height. For optimum design of the two-layer sintering process we have 
to evaluate the coke rate and thickness of the two layers. The two main objectives of the 
sintering process are sinter quality and reduction of coke rate, which is investigated here 
by multiobjective optimization to evaluate the Pareto optimum points, which gives the 
competitive optimum points with respect to the two conflicting objectives. The total 
height of the sinter bed can vary significantly in industrial practice, and thermal efficiency 
or coke rate improves with higher bed height, which however requires higher suction 
pressure. This study gives a good insight into the effect of sinter bed height on quality and 
coke rate.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Iron ore sintering is a complex high temperature gas-
solid reaction process for bulk production of blast 
furnace raw material.  The quality of sinter is very 
important for smooth operation and high productivity 
of blast furnace since it improves the permeability 
and reducibility of the burden material. The process 
have been analyzed by the detailed CFD based model 
considering all the important phenomena like flow 
through porous bed, heat and mass transfer, gas-solid 
reaction, melting and solidification (Nath, et al., 
1997). Sinter quality is mainly dependent on the 
melting fraction, which again depends on the 
temperature profile during sintering. Very low 
melting will cause insufficient sinter strength 
resulting in high return fines. Excessive melting will  
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Fig. 1. Two-layer sintering process.  
 
result in homogeneous glassy structure, which has 
very low reducibility. Therefore optimum melting is 
necessary for good quality of sinter. A heterogeneous 
texture consisting primarily of unreacted porous 
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hematite ore bonded by acicular calcium ferrites is 
reported to be optimum (Formoso, et al., 2003; 
Dawson, 1993). Two-layer sintering with normal 
coke rate in the top layer and lower coke rate in the 
bottom layer can significantly reduce the overall 
coke rate and improve the sinter quality by producing 
optimum thermal profile and melting fraction 
throughout the bed height, as schematically shown in 
Fig. 1. Optimization techniques like genetic 
algorithm is applied to evaluate the optimum 
conditions for quality, productivity and thermal 
efficiency of two-layer sintering process 
 
2. MATHEMATICAL MODEL FOR SINTERING 

 
The mathematical model for the sintering process is 
capable of calculating the solid and gas temperatures 
and compositions at any position of the sinter bed 
during its operation (Nath et al., 1997). To achieve 
this a dynamic model in two-dimensional Cartesian 
coordinate system has been developed, neglecting 
the variation in the transverse direction. The gas 
velocity through the bed is estimated from the 
Ergun’s pressure drop equation by an iterative 
method. All the other process variables are evaluated 
by solving the transient forms of the appropriate 
transport equations. The set of equations used for 
modeling the process is therefore consisted of: 
1. Gas velocity profile by Ergun’s pressure drop 

equation.  
2. Solid phase thermal energy balance. 
3. Gaseous phase thermal energy balance. 
4. Solid phase mass or species balance. 
5. Gaseous phase mass or species balance. 
 
2.1 Ergun’s Pressure Drop Equation 
 
Gas velocity during sintering was estimated by an 
iterative method from Ergun’s pressure drop 
equation for a given pressure drop.  As sintering 
progresses through the drying and melting stages, 
porosity and grain size increase substantially 
changing the gas velocity in the packed bed, which 
was estimated on the basis of a previous work 
(Cummings, et al., 1990) and incorporated in 
Ergun´s equation given as: 
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2.2 Generalized equation 
 
A generalized solver was used to solve the variables 
like temperature of gas (Tg), temperature of solid 
(Ts), and concentration of the gaseous species (G) 
like : O2, CO, CO2, H2, H2O, as shown below:  
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Where φ  is any pertinent transport variable, and Sc, 
Sp are source terms.  The source terms are different 

for each particular case ( G,T,Tφ gs= ).  At the inlet 
boundary, temperature and composition of solid and 
gas are known, and at outlet zero gradient condition 
is used, details are given elsewhere (Nath et al., 
1997). 
 
Table 1. Sintering reaction and phase transformation 
 
 Reaction 

name 
Formula 

1 Reduction of 
Iron oxides    

FeFeOOFeOFe →→→ 3232

2 Decomposition 
of Limestone 

CaCO3=CaO+CO2 

3 Coke 
combustion 

C+O2=CO2 ;  2C+O2=2CO 

4 Boudourd 
reaction 

C+CO2=2CO 

5 Water gas 
reaction 

C+H2O=CO+H2 

6 Water gas shift 
reaction 

H2O+CO=CO2+H2 

7 Formation of 
water vapor 

H2+0.5O2=H2O 

8 Drying and 
condensation 

<H2O>=(H2O) 

9 Melting and 
Solidification 

[Solid Sinter]⇔  <Liquid Sinter> 

 
 
2.3 Solid Phase Mass or Species balance 
 
The solid phase can be evaluated from the kinetic 
models taken from literature.  However, since the bed 
in the present case is not static but moving, we have 
to incorporate the convective terms in the rate 
expression to account for the solid velocity as given 
below: 
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2.4 Sintering Reactions 
 
The important reactions and phase transformations 
during the sintering process, considered for 
developing the model are listed in table 1. Details of 
the reaction kinetic models and parameters are given 
in the previous publications (Nath, et al., 2004), and 
so not reproduced here. 
 

3. PROCESS OPTIMIZATION BY GENETIC 
ALGORITHM 

 
In the field of traditional optimization, the less robust 
derivative based optimization techniques are often 
used for handling single and multiobjective 
optimization problems (Deb, 2001). Unfortunately, 
an excellent initial guess of the optimal solutions is 
required for this kind of traditional optimization 
technique. This means one must almost know the 
optimal solution even before solving the problem. 
Sometimes engineering judgements are used to 



 

     

provide intelligent initial guesses but that need a 
prerequisite of the user being extremely intelligent 
with the solution techniques along with their domain 
knowledge which is very rare most of the times. This 
kind of demands made these techniques rather 
unpopular from the point of view of user-
friendlyness. Recently, genetic algorithm (GA), and 
its adaptations for more useful but complex 
multiobjective optimization problems, have become 
very popular. Unlike conventional methods, these 
methods work with a bunch of initial guesses (not to 
be provided by a user), called population and 
generally have the capability of finding the global 
optimum in presence of several local optima. 
Simultaneously this robust algorithm is superior to 
traditional optimization algorithms in many aspects 
(Deb, 2001; Goldberg, 1989).  

 
Fig 2: Flowchart of working principle of NSGA II 
  
In case of multiobjective optimization, instead of a 
unique optimal solution, a set of equally good 
(nondominating) optimal solutions is obtained 
(Pareto sets). One popular way of solving 
multiobjective optimization problems is to solve a 
single objective optimization problem, which is a 
weighted-average of the several objectives. 
Unfortunately, the solution obtained by this process 
depends largely on the values assigned to the 
weighting factors used. This approach doesn’t 
provide a dense spread of the Pareto points. Another 
popular way of solving a multiobjective optimization 
problem is to covert one or more of the objectives 
into constraints and solve a single objective 
optimization problem. In this case, solving the same 
problem many times by changing the constraint 

boundaries each time generates the whole Pareto set. 
The problem with this approach is also with getting a 
dense spread in the Pareto set as most of the time, 
changing constraint boundary leads to same final 
solution in the Pareto set. One has to run the 
optimization code minimum those many times as 
there are distinct number of solutions in the Pareto 
set. Among several methods available to solve 
multiobjective optimization problems, nondominated 
sorting genetic algorithm II (NSGA II) (Deb, et al. 
2002), is used here to obtain the Pareto set which is 
free from all problems stated above.  The set of 
operations carried out from one generation to the 
next, and the working principle of NSGA-II is 
schematically shown in fig. 2. NSGA based 
techniques have been used to solve a wide variety of 
multiobjective optimization problems in materials, 
metallurgical and chemical engineering in recent 
years like, sintering (Nath, et al., 2004; Nath, et al., 
2003), continuous casting (Chakraborti, et al., 2001), 
ore beneficiation (Mitra, et al., 2004), industrial 
nylon-6 semibatch reactor (Mitra, et al., 1998) etc. 
 

4. PROBLEM FORMULATION 
 
The two objectives taken into consideration for this 
work are related to sinter quality and coke 
consumption where the former is maximized and the 
latter is minimized. For the present study it has been 
assumed that 30 % melting is optimum for the sinter 
quality for melting (SQM). The first objective (SQM) 
is, therefore, defined as having maximum value of 
100 % when the melting is optimum (30 %) 
throughout the sinter bed and decreases linearly 
otherwise. The second objective (CW) is the 
combined (weighted average) coke used in two 
layers of sintering. The decision variables are the 
coke used in upper (CA) and lower (CB) layers and 
the position of the boundary line (B) between the 
upper and lower layers. Decision variable bounds are 
used as constraints. The above multiobjective 
optimization problem can be stated as a standard 
nonlinear programming problem as follows: 

SQMMax
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Where superscript L and U denote the lower and 
upper bounds of the decision variables. The two 
objective functions used here are conflicting in 
nature and so it is likely that a Pareto set of 
nondominating optimal solutions can be obtained. 
The nondominated sorting genetic algorithm II 

Start 

Parent population initialization 

Classify the population into 
several non-dominating fronts 

Selection using constrained 
tournament selection  

Crossover & mutation to 
generate children population 

Is generation count equals 
maximum number of generation? 

Increment 
generation 

count 

Stop 

Yes 

No 

Merge parent & children 
population 



 

     

2

3

4

5

6

7

8

9

10

50 60 70 80 90 100

Sinter Quality for Melting, %

(NSGA II) is used to solve the problem defined 
above. 
The mathematical model presented here is capable of 
calculating the solid and gas temperatures, melting 
fraction and compositions at any position of the 
sinter bed during its operation. The communication 
between the optimization code and the model occurs 
as follows. For each of the candidate solutions 
generated by optimization module, CA, CB and B 
values are supplied by the optimization code to the 
model. The model is solved for these decision 
variables along with other fixed design parameters 
for the given sintering bed and two final outputs 
(SQM and CW) are returned back to the optimizer 
code. The whole process gets repeated several times 
to obtain the final solution. 
 

5. RESULTS AND DISCUSSION 
The objective of the present study is to optimize the 
two layer sintering process, to achieve high sinter  

 
Fig. 3. Molten zone during sintering for (a) uniform 

coke rate, and (b) Two-layer sintering.   
 
quality for melting (SQM) with minimum coke rate. 
Typical results for 40 cm bed height, with equal top 
and bottom layer thickness showed optimum results 
for coke rate of 7.4 % and 4.8 % in the top and 
bottom layer respectively, giving rise to an overall 
coke rate of 6.1 %. The results for mono-layer 
sintering with uniform coke rate of 6.1 % is 
compared with two-layer sintering, as shown in fig. 
3. The results for mono-layer sintering showed 
melting is very low in the top critical zone just after 
the ignition hood, giving rise to high return fines; 
whereas melting is excessive or more than 40 % in 
the lower regions giving rise to glassy phase with 
very low reducibility. For two-layer sintering 
however, the melting is more or less uniform 
throughout the bed producing good sinter quality 
with high strength and reducibility. Optimization 
results of SQM value and coke rate for varying top 
layer thickness is shown in fig. 4.  The result shows 
that both SQM and coke rate increases with 
decreasing top layer thickness. However, our  

 
Fig. 4. Variation of coke rate and sinter quality for 

melting with top layer thickness.  

 
Fig. 5. Initial guess and Pareto optimum points 

shown by open and filled circles respectively. 
 

 
Fig. 6. Variation in Pareto optimum set points for 

sinter bed height of 30, 40, 50 and 60 cm. 
 
objective is to increase the value of SQM and 
decrease the coke rate (conflicting sense), and so this 
becomes a multiobjective optimization problem. 
The twin objective of optimizing the process by 
maximizing SQM and minimizing total coke rate by 
multiobjective optimization is achieved by 
simultaneously varying the manipulated or decision 
variables like coke rate in the top and bottom layers, 
and the thickness of top layer. Fig. 5 shows the 
randomly created initial population of the zeroeth 
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generation and the final converged Pareto optimum 
set points by empty and filled circles respectively. 
From the figure, we can observe that the Pareto set 
points define the boundary for lowest coke rate with 
maximum SQM values, whereas the initial guess 
points are scattered with many points having high 
coke rates and low SQM values.  NSGA II was 
observed to take about three to four generations to 
converge to the final Pareto set. After convergence, it 
was found to maintain the same points in the Pareto 
fronts over any number of generations.  The Pareto 
front shown in fig. 5 was a convex one. 
Two most important issues of any multiobjective 
optimization study were (i) achieving the global 
Pareto front, (ii) achieving a dense spread in the final 
Pareto front. The first point was validated by two 
approaches: (i) generating different initial population 
(by changing the decision variable bounds) and 
checking whether the final Pareto fronts are same for 
all these different populations or not. (ii) Solving the 
multiobjective problems using a single-objective 
preference based optimization method (ε-constraint 
method). As both the cases stated above were true for 
the present study, the authors claim to achieve final 
solutions near or on the global Pareto front. As seen 
from fig. 5 (filled circles), spread obtained in the 
global Pareto front was quite dense. The final Pareto  
front was quite different from the randomly created 
population in the initial population (empty circles). 
This means with progress in generations, better 
nondominating fronts were evolved and finally the 
global Pareto front is achieved. The elitist approach 
of considering both parent and child population for 
selecting the better candidates for the mating pool 
was found to work very well. Crowding metric 
helped to maintain diversity and thereby better 
spread in the Pareto front. 
From this Pareto set, one can choose an operating 
point based on different kind of requirements of the 
plant. If quality is a primary issue where relatively 
more of coke consumption is allowed, one can 
choose a point from the given Pareto set that has a 
higher SQM as well as CW value. Had coke 
consumption been little more important than quality, 
under some circumstances, the reverse of the same 
proposed earlier is done. 
Furthermore it has been analyzed whether the 
location of the global Pareto front changes with 
different heights of the sinter bed. As the total sinter 
bed height was varied from 30 to 60 cm, with a gap 
of 10 cm, the global Pareto front in each case were 
found to get a push towards right bottom corner of 
fig 6. It was further observed that increasing the bed 
height any further is not going to help as the global 
Pareto fronts for total bed height of 50 and 60 cm 
were almost identical or very close to each other. A 
bed height of 50 to 60 cm was, therefore, 
recommended.  Increase in bed height will require 
higher suction pressure, which generally restricts the 
bed height, and a comparison between the suction 
pressure for the different bed heights and the 
corresponding burn through points (BTP) are given 
in table 2.   
 

 
Fig. 7. Pareto points in top layer vs. coke rate 

domain, for 30, 40, 50 and 60 cm bed height. 
 
Table 2. Suction pressure applied for different sinter 

bed heights 
 

Bed 
Height 

 cm 

Ignition 
Hood 

0-4 min 

Top 
4-6 
min 

Middle & 
Bottom 

6-15 min 

BTP 
Min 

30 750 750 1000 12.5 
40 1000 1000 1300 15.0 
50 1250 1250 1600 17.0 
60 1500 1500 1900 19.5 



 

     

We can now redraw the same Pareto optimum set 
points shown in fig. 6, separately for the four 
different bed heights by adding another dimension to 
it, i.e. the top layer thickness as shown in fig 7. By 
comparing the four graphs for the four different bed 
heights, some general trends can be observed, which 
gives a very good insight of the process. The top 
layer thickness (as percentage of the total bed height) 
gradually decreases with increasing total bed height. 
For example the Pareto points for 30 cm bed height 
with high SQM (~ 95 %) and low coke rate lies 
between 45-50 % top layer thickness, while for 60 
cm bed height it is scattered mainly between 30-40 
% top layer thickness. There is also a gradual shift of 
the Pareto points from the high coke rate region to 
the low coke rate region as the bed height increases, 
and for comparative study we can observe that for 30 
cm bed height, points with high SQM value needs 
about 6 % or more coke rate, and for 60 cm bed 
height similar SQM value can be achieved with 
about 5 % coke rate. Therefore we can conclude that 
coke rate can be reduced by about 20 % when sinter 
bed is increased from 30 to 60 cm. Analysis of two-
layer sintering process by Pareto optimum points 
shown in fig. 7, can be an ideal tool to evaluate the 
most suitable operating point with respect to sinter 
quality for melting, coke rate and top layer thickness, 
for an existing sinter plant under the given 
constrains, or for designing new sinter plants.   
The NSGA II parameters used to obtain the Pareto 
set for the present study are as follows: Population 
size = 50; Number of decision variables = 3; String 
length for each decision variables = 6; Maximum 
number of generations = 30; Crossover probability = 
0.9; Mutation probability = 0.01; lower bounds used 
for coke in upper and lower layers = 3 %; upper 
bounds used for coke in upper and lower layers = 10 
%; lower and upper bounds used for the top layer 
thickness are 25 % and 70 % respectively. 
 

6. CONCLUSIONS 
 
The salient points of the present study on 
multiobjective optimization of two-layer sintering of 
iron ore can be summarized as: 
1. A twin objective optimization problem relating 
quality and fuel consumption issues for iron ore 
sintering operation is solved using NSGA II. The 
problem displayed a convex Pareto-optimal front.  
2. NSGA-II has been able to find solutions on or 
near the true Pareto-optimal front of the problems. 
This has been validated by solving the multiobjective 
problems using a single-objective preference based 
optimization method (ε-constraint method) as well as 
getting the same global solution by starting with 
different initial population. The other advantage of 
using the NSGA-II is that it has found multiple 
Pareto- optimal solutions in a single simulation run. 
3. The optimum top layer thickness is higher in the 
range of 45-50 % for low sinter bed height of 30 cm 
and gradually decreases to 30-40 % top layer 
thickness for high sinter bed height of 50-60 cm. 
4. This study suggests that the effect of increase in 
bed height is more significant in the lower bed height 

region of 30-40 cm, and becomes less significant as 
the bed height increases from 50 to 60 cm, and any 
further increase in bed height will not provide much 
improvement in Pareto front. 
5. About 20 % reduction of coke rate is expected 
when bed height is increased from 30 to 60 cm for 
achieving similar high sinter quality of melting. 
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8. NOMENCLATURE 

 
dp  Granule diameter, m 
Fm  Fraction melted, % 
L   Height of bed, m 
P  Pressure, atm 
Ri  Reduction rate, mole / s 
V  v / vo non-dimentional gas velocity in y 

direction 
Vs  vs / vo non-dimentional solid velocity in x 

direction 
x, y  Direction co-ordinate, m 

X  
o
ss

o
s C/)CC( − , solid fraction converted 

μ  Viscosity of gas, Kg/m.s 
ρ  Density, kg/m3 

ε  Bed porosity 
 




