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Abstract: The problem of the robust adaptive tracking for a class of uncertain systems 
with partially known nonlinear uncertainties and series nonlinearities is discussed. The 
proposed adaptive robust controller guarantees the tracking error of the systems uniformly 
ultimately bounded, and makes systems with nonlinear inputs the same robust as those 
with linear input. In contrast to some results in the control literature, the adaptive laws for 
updating the estimate values of the unknown parameters and the proposed controller are 
continuous. Moreover, the proposed adaptive control scheme can be easily implemented 
in practical control due to the continuity of the adaptive laws and the proposed controller. 
Finally, an illustrative example is given to demonstrate the utilization of the results. 
Copyright © 2005 IFAC 
 
Keywords: Uncertain Systems, Robust Tracking, Adaptive Control, Nonlinear Actuators, 
Uniformly Ultimately Bounded. 

 
 
 

  
1.INTRODUCTION 

 
In recent years much research effort has been 
devoted to the problem of robust tracking and output 
regulation of control systems (Hopp, et al., 1990; Li, 
et al., 1995; Elmali, et al., 1992; Li, et al., 1997; Hsu, 
et al., 2001). Hopp and Schmitendort designed a 
robust asymptotic tracking controller for a class of 
time–invarying uncertain linear systems (Hopp, T. H. 
and Schmitendorf, W. E., 1990). Li et al discussed 
the problem of robust output tracking of a class of 
single-input/single-output systems with uncertain 
structures using Lyapunov method (Li, et al., 1995). 
Elmali and Olgac extended the result to multi-input/ 
multi-output systems via sliding mode technique 
(Elmali, H. and Olgac, N., 1992). Li and Krstic 
studied the optimal design of adaptive tracking 
controllers for nonlinear systems (Li, Z. and Krstic, 
M., 1997). Cheng et al proposed a sufficient and 
generically necessary condition for the solvability of 
the output regulation problem for affine nonlinear 
control systems (Hsu Chih-Chin and Fong I-Kong, 

2001). More attention has been paid to the research 
on the problem of robust tracking and output 
regulation of control systems. (see Haddad, W.M, et 
al. 1997 and  Jong Hyeon Park, et al. 2000.) 
 
These studies concentrate on systems with a “linear” 
input. They only work under the assumption of linear 
input, i.e., the system model is indeed linearizable. 
However, because of the physical limitations in 
control systems, there are nonlinearities in the control 
input (for example, saturation function) and these 
effects cannot be neglected. For example, hydraulic 
servo and electric servo motors both display such 
nonlinear characteristics (Truxal 1958). Because they 
are derived from linear models, the aforementioned 
studies cannot be applied to the analysis and design 
on uncertain systems with nonlinear inputs. There-
fore, efforts on robust control of uncertain systems 
with nonlinear inputs have been made, including 
robust stabilization and robust tracking of linear 
systems with nonlinear input using variable structure 
method (Hsu, K. C. 1998a, b, Liu 2001), ultimate 



     

boundedness control of linear systems with band-
bounded nonlinear actuators (Hsu Chih-Chin and 
Fong I-Kong, 2001). 
 
So far, most studies on roust control are based on the 
assumption that the bounds of uncertainties are 
known and the designed controllers depend on the 
assumed bounds of uncertainties. However, it is 
often difficult to estimate the bounds of uncertainties 
for practical systems. If the actual bounds of the 
uncertainties exceed the assumed values used in 
controller design, the stability of the system could 
not be guaranteed. To ensure the stability, one has to 
use large bounds of uncertainties in the controller 
design, which definitely leads to large conservative-
ness.  
 
In this paper, robust tracking for a class of uncertain 
systems with nonlinear actuators and un-known 
bounds of uncertainties is considered. The designed 
adaptive controller is able to ensure the controlled 
systems to track the reference model, and makes 
systems with nonlinear inputs the same robust as 
those with linear inputs. Finally, an illustrative 
example is given to demonstrate the utilization of the 
results. 
 
 

2.SYSTEM STATEMENT 
 

An uncertain system with nonlinear actuators and 
unknown bounds of uncertainties can be expressed as 
 

( ) ( ( ) ( , ))x t Ax B u x tφ ξ= + +& ,                   (1) 
 

where x∈R n  and u∈R m  are the state and the input 
respectively. And ξ (x,t) is the system uncertainties 
with certain structure and uncertain parameters. A 
and B are const matrices with appropriate 
dimensions. The nonlinear input φ ( u )  satisfies 
φ ( 0 ) =0. Assume there is a unique solution to the 
equation (1) for any initial condition x ( t 0 ) = x 0  and 
input u ( t ) . 
 
Let the reference model take the form of 
 

m m mx A x=& ,                          (2) 
 
where xm∈Rn  is the state vector of the reference 
model. 
 
For the stable tracking of the system (2), the state of 
the system (2) is assumed to be bounded, i.e. the 
matrix Am is stable. Moreover, the following several 
assumptions must be made. 
 
Assumption 1: The matrix A in the system (1) is 
Hurwitz. 
 
Assumption 2: For the system (1) and the reference 
model (2), there exist a matrix H∈Rm×n such that 
 

mA A BH− = ,                         (3) 
 

Assumption 3: The nonlinear actuator φ(u)  of the 
system (1) satisfies 
 

( )T Tu u hu uφ ≥ ,                        (4) 
 
where h is the known positive constant. 
 
Assumption 4: The uncertainties ξ(x,t) of the 
system (1) satisfies 
 

*( , ) ( , )Tx t x tξ ρ θ≤ ,                    (5) 
 
where 1 2( ) ( ( ), ( ), , ( ))T T

pρ ρ ρ ρ• = • • •L , * * *
1 2( , ,θ θ θ=

*, )T
pθL , where ( , ) 0, 1,2, ,i x t i pρ > = L  for all x such 

that 0x > . And the function ( ) 0,iρ • >  1,2, ,i p= L  
is also assumed to be continuous, uniformly bounded 
with respect to time and locally uniformly bounded 
with respect to x. * pRθ ∈  is a bounded constant with 
unknown bounds. 
 
Remark 1: Equations (3) is a commonly assumption 
of model-following problem. And Equations (4) is a 
commonly restriction to discussing the nonlinear 
actuators. More information of Equations (3), (4) can 
be found in (Hsu, K. C., 1998a, b). 
 
From Assumption 1, there exists a symmetric 
positive definite matrix Q such that the equation 
 

TA P PA Q+ = − ,                           (6) 
 
has positive definite solution P. 
 
For the convenience of discussion, the error vector is 
defined as e=xm-x. Then, from the equations (1), (2) 
and Assumption 2, the error equation can be obtained 
as 
 

( ( ) ( , ))me Ae BHx B u x tφ ξ= + − +& .         (7) 
 
Moreover, the bounds of the state of the reference 
model (2) is denoted as 
 

*max mt
Hx w= ,                       (8) 

 
It is worth mentioning that *w  is bounded, but may 
be unknown for the system designer. 
 
Remark 2: From the equation (7), the problem that 
the system (1) tracks the system (2) is the same as 
that of uniform ultimate boundedness of the error 
system (7). Therefore, a controller that makes the 
error system (7) uniformly ultimately bounded need 
to be designed Moreover, when φ (u)=u, the model 
for the system (1) is similar to that one presented in 
(Hopp, T. H. and Schmitendorf, W. E., 1990). But 
the uncertainties ( ( ), )x t tξ , which bounds are 
unknown, are wider than theirs. And the controller 
presented in this paper will overcome the 
discontinuity of the ones presented in (Hsu, K. C. 
1998a, b; Liu, et al., 2001). 
 



     

3.THE ROBUST TRACKING CONTROLLER 
 
Under the above assumptions, the robust tracking 
controller for the error system (7) is presented as 
 

( ) Tu t B Peϕ= ,                            (9) 
 
where 
 

2 2

1 2

ˆˆ1 ( ) ( ( , ) ( ))( ) ( )ˆˆ ( ) ( , ) ( )

T

T T T

w t x t tt
h B Pe w t B Pe x t t

ρ θϕ
ε ρ θ ε

= +
+ +

 (10) 

 
where the scalar 1ε  and 2ε  are positive constants. 
The scalar h is defined in Assumption 2. The 
parameters ˆ ( )w t and ˆ( )tθ  are the estimates of the 
uncertain items *w and *θ  satisfying the following 
adaptive laws 
 

1ˆ ˆ( ) ( ) Tw t w t B Peδ γ γ= − +& ,                      (11) 

2
ˆ ˆ( ) ( ) ( , )Tt t B Pe x tθ δ θ ρ= − Γ + Γ& ,                  (12) 

 
where the scalars δ1, δ2 and γ are positive constants. 
Γ is any symmetric positive definite matrix. The 
parameters 0 0ˆ ˆ( )w t w=  and 0 0

ˆ ˆ( )tθ θ=  are the initial 
conditions of ˆ ( )w t and ˆ( )tθ  respectively, which are 
finite. δ1, δ2, γ, Γ, 0ˆ ( )w t  and 0

ˆ( )tθ  are design 
parameters. 
 
Remark 3: In contrast to the controller in (Hopp, T. 
H. and Schmitendorf, W. E., 1990), one of the 
outstanding features of the controller defined by the 
equations (9) and (10) is that there need not know the 
uncertain bounds of the system (1) for the controller 
design. And as compared with the controller in (Hsu, 
K. C. 1998b), the controller in this paper is 
continuous and parameters-adjustable. Therefore, it 
can be easily implemented in practical engineering. 
 
On the other hand, letting 
 

*( ) ( )w t w t w= −% % ,                         (13) 
*ˆ( ) ( )t tθ θ θ= −% .                           (14) 

 
Then the adaptive laws (11) and (12) can be 
reformed as the following error equations 
 

*
1 1( ) ( ) Tw t w t B Pe wδ γ γ δ γ= − + −&% % ,          (15) 

*
2 2( ) ( ) ( , )Tt t B Pe x tθ δ θ ρ δ θ= − Γ + Γ − Γ&% % .     (16) 

 
The following theorem can be obtained which shows 
the uniform ultimate boundedness of the closed-loop 
system in the equations (7), (9), (15) and (16). 
 
Theorem 1: Consider the error system (7) and the 
error equations (15) and (16) satisfying Assumptions 
1-4. Then the solution 0( , , ) ( ; , ( ), ( ), ( ))e w t t e t w t tθ θ% %% %  to 
the error system (7) and the error equations (15) and 

(16) is uniformly ultimately bounded in the presence 
of the uncertain ( ( ), )x t tξ . 
 
Proof: For the error system (7), the controller (9) and 
the error equations (15) and (16), a Lyapunov 
function candidate is defined as  
 

1 2 1( , , ) ( ) ( ) ( )T TV e w e Pe w t t tθ γ θ θ− −= + + Γ% % %% % ,    (17) 
 
where  the matrix P is defined by (6). And the 
parameters γ and Γ are declared in (11) and (12) 
respectively. Then, taking the derivative of ( , , )V e w θ%%  
along the trajectories of the error system (7), the 
controller (9) and the error equations (15) and (16) 
leads to 
 

1 1( , , ) 2 2 ( ) ( ) 2 ( )T TdV e w e Pe w t w t t
dt

θ γ θ θ− −= + + Γ
%% &% %&& % %  

( ) 2 2 ( )T T T T
me A P PA e e PBHx e PB uφ= + + −  

1 12 ( , ) 2 ( ) ( ) 2T Te PB x t w t w tξ γ θ θ− −− + + Γ &% %&% % . (18) 
 
It can be got from the equations (4) and (9) 
 

22( ) ( ) ( ) ( )T T T Tu u t e PB u hu u h t B Peφ ϕ φ ϕ= ≥ = .   (19) 
 
Furthermore, the inequality (19) can be rewritten as 
 

2
( ) ( )T Te PB u h t B Peφ ϕ− ≤ − .                (20) 

 
Substituting the equations (6) and (10), and the 
inequality (20) into the equation (18) leads 
 

2( ) 2 2 ( )T T T
m

dV e Qe e PBHx h t B Pe
dt

ϕ•
≤ − + −  

1 12 ( , ) 2 ( ) ( ) 2 ( )T Te PB x t w t w t tξ γ θ θ− −− + + Γ &% %&% %  
ˆ2 ( ) 2 ( , ) ( )T T T Te Qe w t B Pe B Pe x t tρ θ≤ − + + %  

2 22 2

12

ˆ ˆ2( ( , ) ( )) 2 ( )
ˆ ˆ ( )( , ) ( )

T T T

TT T

x t t B Pe w t B Pe

B Pe w tB Pe x t t

ρ θ

ερ θ ε
− −

++
 

22 *
1 1 2ˆ2 ( ) 2 ( ) 2 ( )w t w t w tδ δ δ θ− + − %%  

*
22 ( )tδ θ θ+ % .                                          (21) 

 
Noting the fact 
 

0 , 0, 0ab b a b
a b

≤ < ∀ ≥ >
+

. 

 
Then 
 

22
1

1 1

ˆ ˆ2 ( ) 2 ( )
ˆ2 ( )

ˆ ˆ( ) ( )

T T
T

T T

w t B Pe w t B Pe
w t B Pe

B Pe w t B Pe w t

ε

ε ε
− =

+ +
 

12ε≤ .                  (22) 
 

Similarly 
 

22

2

ˆ2( ( , ) ( ))ˆ2 ( , ) ( ) ˆ( , ) ( )

T T
T T

T T

x t t B Pe
B Pe x t t

B Pe x t t

ρ θ
ρ θ

ρ θ ε
−

+ 22ε≤ . (23) 



     

 
On the other hand 
 

2 * 2 2 *
1 1 1 12 ( ) 2 ( ) ( ) ( ( ) 2 ( ) )w t w t w w t w t w t wδ δ δ δ− + = − − −% % % % %  

2 * 2
1 1( ) ( )w t wδ δ≤ − +% .            (24) 

 
Similarly 
 

2 2 2* *
2 2 2 22 ( ) 2 ( ) ( )t t tδ θ δ θ θ δ θ δ θ− + ≤ − +% % % ,  (25) 

 
Inserting the inequalities (22)-(25) into the inequality 
(21) leads 
 

22
1 2

( , , ( )) ( ) ( )TdV e w t e e w t t
dt
θ θ δ δ θ≤ − − −
%% %%  

2* 2 *
1 2 1 22( ) ( )wε ε δ δ θ+ + + +  

22 2
1 2( ) ( )c e w t tδ δ θ≤ − − − %%  

2* 2 *
1 2 1 22( ) ( )wε ε δ δ θ+ + + +  

2c e ε≤ − + %% % ,                              (26) 
 
where 
 

min ( )c Qλ= ,                    (27a) 
 1 2min( , , )c c δ δ=% ,                (27b) 

2* 2 *
1 2 1 22( ) ( )wε ε ε δ δ θ= + + +% .        (27c) 

 
Thus, from the equality (26), it can be asserted that 
the solution 0 0 0 0( , , )( ; , ( ), ( ), ( ))e w t t e t w t tθ θ% %% %  to the 
system (7) and the error equations (15) and (16) is 
uniformly ultimately bounded in the presence of the 
uncertain ( ( ), )x t tξ . 
 
Remark 4: It is worth pointing out that the 
parameters ε% , 1δ  and 2δ  can be chosen by the 
system designer. Therefore, by choosing these 
parameters correctly, the better tracking performance 
of the adaptive systems can be guaranteed. In fact, it 
can be seen from the equation (27) that a smaller ε 
can be guaranteed by choosing parameters 1ε , 2ε , 1δ  
and 2δ  which are small enough. However, making 

1δ  and 2δ  small will lead to a high adaptive gain, 
and letting 1 0ε →  and 2 0ε → , the controller (9) will 
be reduced to a standard saturation-type controller, 
resulting in a tradeoffs between the better tracking 
results and large gains, and the loss of continuity of 
the controller. 
 
 

4. SIMULATIONS 
 
Consider an uncertain system with nonlinear 
actuators described as 
 

2
1 2 1

0 1 0
( ( ) ( )sin )

2 2 1
x x u x x xφ θ

   
= + + +   − −   

& ,      (28) 

where 
 

0.125( 1.5)

0.5( 1) ( ),                                     1.5,

( ) (0.8 0.54) ( ) 0.9sin((5 7.5)

( )) ,                                  1.5.

u

u

e sign u u

u u sign u u

sign u e u

φ
− −

 − ≤
= + − −

× >

 

 
The reference model is 
 

0 1
1 2m mx x 

=  − − 
& .                       (29) 

 
It can be verified that the system (28) and (29) satisfy 
Assumption 1-4 (where (1  0)H = ). For the equation 
(6), letting Q I= , then 
 

0.75 0.25
0.25 0.125

P  
=  
 

 

 
For the equations (9)-(12), setting the uncertain 
unknown parameter 2θ = − , the uncertain known 
parameter 2

1 2 1( , ) ( )sinx t x x xρ = + , the initial condi-

tions (0) ( 2,2)Tx = −  and (0) (2, 1)T
mx = − . Fig. 1-2 

show the simulation results where the adaptive 
parameters 1 0.05δ = , 2 0.01δ = , 0.01γ =  and 0.02Γ = , 
and the controller parameters 1 2 0.01ε ε= = . Fig. 3-4 
show the simulation results where the adaptive 
parameters 1 0.2δ = , 2 0.1δ =  and 0.1γ = Γ = , and the 
controller parameters 1 2 0.1ε ε= =  (where the real line 
represents 1 1 1me x x= − , the broken line represents 

2 2 2me x x= − ). 
 

 
Fig. 1: The error trajectory ( 1 0.05δ = , 2 0.01δ = , 

0.01γ = , 0.02Γ = , 1 2 0.01ε ε= = ) 
 
 

 
Fig. 2: The control trajectory ( 1 0.05δ = , 2 0.01δ = , 

0.01γ = , 0.02Γ = , 1 2 0.01ε ε= = ) 
 



     

 

 
 
Fig. 3: The error trajectory ( 1 0.2δ = , 2 0.1δ = , 

0.1γ = Γ = , 1 2 0.1ε ε= = ) 
 
 

 
 
Fig. 4: The Control trajectory ( 1 0.2δ = , 2 0.1δ = , 

0.1γ = Γ = , 1 2 0.1ε ε= = ) 
 
 

5. CONCLUSION 
 
The problem of the robust adaptive tracking for a 
class of uncertain systems with partially known 
nonlinear uncertainties and series nonlinearities is 
discussed. The proposed adaptive robust controller 
guarantees the tracking error of the systems 
uniformly ultimately bounded, and makes systems 
with nonlinear inputs the same robust as those with 
linear input. In contrast to some results in the control 
literature, the adaptive laws for updating the estimate 
values of the unknown parameters and the proposed 
controller are continuous. Moreover, the proposed 
adaptive control scheme can be easily implemented 
in practical control due to the continuity of the 
adaptive laws and the proposed controller. 
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