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Abstract: This contribution is concerned with the observability and accessibility
analysis of implicit discrete-time dynamic systems. The presented approach is
motivated by a geometric representation of discrete-time systems and the crucial
observation that the Lie group investigations known for implicit continuous-
time dynamic systems is also appropriate in the discrete-time scenario. The
obtained formal method to state conditions for local observability and accessibility
allows can be done by computer algebra. Furthermore, a nonlinear discrete-time
controller design is discussed by considering the class of input-to-state linearizable
continuous-time control systems. This approach is based on the calculation of a
control sequence such that the system trajectories considered at equidistant time
steps coincide with those of a linear discrete-time one. Copyright c©2005 IFAC
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1. INTRODUCTION

In physics and engineering most dynamic processes
and systems are continuous in time and described
mathematically by a system of differential equa-
tions. Nevertheless, the class of discrete-time dy-
namic systems arises quite naturally in modelling
processes with changes in the dependent variables
at equidistant time steps such as for example in fi-
nancial or in economic problems. In control theory
discrete-time dynamic systems appear as the time
discretization of continuous-time systems with re-
gard to a digital implementation of control laws.
Especially for linear and time-invariant systems
this approach is state of the art since the last two
decades. Therefore, this contribution is focused on
the study of dynamic systems described by a set
of ne implicit difference equations and ny output
functions of the form

0 = f ie (k, zk, zk+1) , ie = 1, . . . , ne (1a)

y
αy

k = cαy (k, zk) , αy = 1, . . . , ny (1b)

in the independent variable k ∈ Z denoting
the discrete time kTs with some fixed (sample)
time Ts and the dependent variables zαz , αz =
1, . . . , nz. For an investigation of observability and
accessibility properties of implicit continuous-time
systems the Lie group approach turned out to be
an appropriate one, (Schlacher et al., 2002). It is
shown that this geometric method is also valid for
implicit discrete-time systems.

This paper is organized as follows. In Section 2
some notational conventions and mathematical
basics of transformation groups are discussed very
briefly. The observability and accessibility inves-
tigations of implicit dynamic systems by consid-
ering invariants of transformation groups acting



on the solution of the system are motivated in
Section 3 by the special case of explicit dynamic
systems. Consequently, in Section 4 the general
implicit case is treated. A nonlinear discrete-time
control design approach for a class of continuous-
time dynamic systems is presented in Section 5.

2. MATHEMATICAL PRELIMINARIES

Throughout this contribution the language of
manifolds and bundles is used (the reader is kindly
referred to, e.g., (Boothby, 1986), (Saunders,
1989) and the references therein for a detailed
treatment of these topics) since they offer a geo-
metric interpretation of nonlinear dynamic sys-
tems, system analysis, and controller synthesis.
For notational convenience and in order to keep
formulas short index notation of tensor calculus
and the Einstein sum convention is arranged.

The observability and accessibility investigations
treated in the following sections make fundamen-
tal use of Lie groups, therefore the definitions, see,
e.g., (Olver, 1993), are summarized very briefly.
A Lie group is a smooth manifold G that is also a
group and both the composition and the inversion
map are smooth. A transformation group acting
on a manifold M is determined by a Lie group G
and a smooth map Φ : G ×M → M such that

Φe (x) = x , (2a)

Φg◦h (x) = Φg ◦ Φh (x) , (2b)

Φg−1 ◦ Φg (x) = x (2c)

is satisfied with the neutral element e of G and
for all g, h ∈ G as well as x ∈ M. Further, let us
assume a subset S ⊂ M that is a solution set of a
system of equations. A symmetry group is a local
group of transformations such that

Φg (S) ⊆ S

holds for all g ∈ G, meaning that solutions of
the system are mapped to other solutions. A
function I : M → R is called an invariant of the
transformation group Φ if and only if

I (x) = I (Φg (x))

is met for all g ∈ G and x ∈ M.

For the following, transformation groups Φε with
one real parameter ε ∈ R are of special interest.
The vector field

v = vi (x) ∂i , ∂i =
∂

∂xi
, (3a)

vi (x) =
(

∂εΦ
i
ε (x)

)∣

∣

ε=0
(3b)

is called the infinitesimal generator of the group
Φε and is an element of the set of all smooth
sections on the tangent bundle T (M). By means

of a Taylor series expansion of a one–parameter
transformation group Φε it is obvious that the
vector field v = vi∂i generates the group action at
least locally. In local coordinates the expression

Φi
ε (x) = xi + εvi (x) +

ε2

2
v

(

vi
)

(x) +O
(

ε3
)

(4)

is obtained and the Lie series follows under the
assumption of convergence of the Taylor series.

These definitions are the basis for the investiga-
tion of the observability and accessibility problem
of the system (1) where it is the key observation
that the geometric picture of continuous-time sys-
tems (see, e.g., (Schlacher and Zehetleitner, 2003))
can be extended to the discrete-time case. For
a motivation of this analysis the case of explicit
dynamic systems is discussed preliminarily.

3. EXPLICIT SYSTEMS

A nonlinear explicit discrete-time dynamic system
is assumed to be given in the form

xαx

k+1
= fαx (k, xk, uk) , αx = 1, . . . , nx (5a)

y
αy

k = cαy (k, xk, uk) , αy = 1, . . . , ny (5b)

where xk ∈ X ⊆ R
nx , uk ∈ U ⊆ R

nu , yk ∈
Y ⊆ R

ny denote the state, input and output
variables, respectively. In order to give a geo-
metric interpretation of the dynamic system (5)
the trivial bundles EX = (B × X ,pr1,B), EU =
(B × U ,pr1,B) with the discrete set B ⊆ Z, the
smooth nx–dimensional state manifold X , and
the smooth nu–dimensional input manifold U
are considered. Furthermore, adapted coordinates
(k, xαx

k ), (k, uαu

k ) are introduced at least locally for
EX and EU , respectively. Note that the base set B,
which can be interpreted as a zero–dimensional
discrete manifold, is clearly not connected but all
fibers of the bundles EX , EU are smooth manifolds
and assumed to be diffeomorphic to a typical fiber.
With means of the fibered product EX ×B EU
and the bundle EE = (EX ×B EU ,pr1 ×B pr1,B)
it follows quite straightforward that the functions
f and c of system (5) are mappings of the form
f : EE → X and c : EE → Y. Furthermore,
solutions of (5a) are sections of EX . With this
geometric picture of system (5) all basics for the
study of observability and accessibility properties
are at our disposal.

3.1 Observability

For the following it is assumed that a symmetry
group Φε : EE → EE can be found which is acting
on the state variables of system (5) only,

(k, xk, uk) = Φε (k, xk, uk) = Φk,ε , (6)



such that the output functions c
αy

k are invari-
ants of Φk,ε. If there exists such a non-trivial
transformation group, the dynamic system is not
observable and one can find a diffeomorphism ϕk :
(xαx

k , uαu

k ) → (rαr

k , sαs

k , uαu

k ), αr = 1, . . . , nr ≥ 1,
αs = 1, . . . , nx − nr such that (5) takes the form

rαr

k+1
= f̄αr (k, rk, uk) (7a)

sαs

k+1
= f̄nr+αs (k, rk, sk, uk) (7b)

y
αy

k = c̄αy (k, rk, uk) . (7c)

To test whether such a non-trivial transforma-
tion group exists the infinitesimal invariance cri-
terion with the infinitesimal generator of the
symmetry group v|xk

= vk = (∂εΦk,ε)|ε=0
=

Xαx(k, xk, uk)∂αx
= Xαx

k ∂αx
which reads as

vk

(

c
αy

k

)

= X
βx

k ∂βx
c
αy

k =
〈

dc
αy

k , vk

〉

= 0 (8)

is investigated. Furthermore, a system of differ-
ence equations is invariant under a group of trans-
formation if and only if the flow φ

f
k of (5) and the

action of the transformation group commute,

Φk,ε ◦ φ
f
k = φ

f
k ◦ Φk,ε ,

and consequently, the infinitesimal criterion

σ (Xαx

k ) = Xαx

k+1
= X

βx

k ∂βx
fαx

k (9)

follows. Since the invariance criterion (8) has to be
fulfilled for all time steps additional restrictions
by applying the time shift operator σ to (8) and
substitution of the commutator criterion (9) are
obtained. In a first step this procedure results in
〈ω1, vk〉 = 0 with ω1 = ∂αx

c
αy

k+1
∂βx

fαx

k dxβx . The
repetition of these operations leads finally to the
algebraic restrictions

〈ωi, vk〉 = 0 , i = 0, . . . , nx − 1 , (10)

using the abbreviations for the 1–forms

ω0 = ∂αx
c
αy

k dxαx

ωi = ∂αx
c
αy

k+i∂βx
fαx

k+i−1
∂γx

f
βx

k+i−2
. . . ∂ηx

f
ζx

k dxηx ,

i= 1, . . . , nx − 1

and for the partial derivatives

∂αx
c
αy

k+i = ∂x
αx
k+i
c
αy

k+i .

Thus, for a given input sequence uk a test on
observability follows by checking whether the 1–
forms {ωi} are linear independent. If this is the
case, only the trivial infinitesimal generator vk

exists and the system (5) is locally observable.
Furthermore, it is also straightforward to ask
whether there exists an input sequence such that
the given system (5) is locally observable.

3.2 Accessibility

For the investigation of the accessibility property
of (5) a set of one–parameter Lie groups acting

on the dependent variables xk, uk is assumed and
furthermore, let

Φε : (k, xk, uk) → (k, xk, uk)

with infinitesimal generator v|xk
= vk = Xαx

k ∂αx
+

Uαu

k ∂αu
be a subset of the considered Lie groups.

If this subset owns a common non-trivial invariant
function I (k, xk) = Ik, then the system (5) is
not accessible and there exists a diffeomorphism
ϕk : (xαx

k , uαu

k ) → (rαr

k , sαs

k , uαu

k ), αr = 1, . . . , nr,
αs = 1, . . . , nx − nr ≥ 1 such that (5) takes the
form

rαr

k+1
= f̄αr (k, rk, sk, uk) (11a)

sαs

k+1
= f̄nr+αs (k, sk) . (11b)

In order to investigate the existence of an invari-
ant Ik again the infinitesimal criterion is analyzed
which follows as

vk(Ik) = 〈ωk, vk〉 = 0 , ωk = ωk,αx
(k, xk) dxαx .

(12)
Since the considered transformation groups have
to be symmetry groups also the infinitesimal in-
variance criterion reads as

σ (Xαx

k ) = ∂βx
fαx

k X
βx

k + ∂αu
fαx

k Uαu

k . (13)

Furthermore, from σ (〈ωk, vk〉) − 〈ωk, vk〉 = 0
which must hold for any choice of Xk and Uk one
derives

ωk+1,αx
∂βx

fαx

k − ωk,βx
= 0 ,

ωk+1,αx
∂αu

fαx

k = 0 .

Under the assumption that
[

∂βx
fαx

k+i

]

is non-
singular and ∆ = span {w̄j} is the involutive
closure of the vector fields

wi =
(

∂ηx
f

ζx

k

)−1

. . .
(

∂βx
fαx

k+i

)−1
∂αu

fαx

k+i∂ηx

the algebraic restrictions of (12) and (5) are ob-
tained as

〈ωk, w̄j〉 = 0 , j = 0, . . . , nx − 1 .

If dim (∆) = nx holds, then for ωk there exists
only the trivial solution which implies that no
invariant function Ik of the considered subset of
Lie groups can be found and consequently, the
system is locally strongly accessible. Therefore,
the test on local strong accessibility of (5) follows
by checking the dimension of the distribution ∆.
It has also to be mentioned that in the case
of a singular Jacobi-matrix

[

∂βx
fαx

k+i

]

separate
investigations are necessary.

4. IMPLICIT SYSTEMS

In this section the analysis of observability and
accessibility properties of discrete-time dynamic
systems is generalized to the case of implicit



systems. It is worth mentioning that for implicit
dynamic systems the distinction between state
and input variables is in general not valid a priori
as it is for explicit systems and therefore, a new
coordinate z ∈ Z ⊆ R

nz , cp. (1), is used for
describing implicit dynamic systems. It will be
shown in the following that the implicit system
(1) is locally equivalent to an explicit one under a
certain regularity condition, cp., e.g., (Schlacher
et al., 2002) for continuous-time systems. For
the presented formal approach, however, it is not
necessary to have the associated explicit system
at our disposal but a certain normal form which
for continuous-time systems is called formally
integrable.

For illustrating the corresponding geometric pic-
ture of the dynamic system (1) the trivial bun-
dle EZ = (B × Z,pr1,B) is introduced where
the base manifold B ⊆ Z is again a zero–
dimensional discrete manifold and Z indicates an
nz–dimensional smooth manifold. With the trivial
bundle EI = (EZ ×Z,pr1, EZ) and adapted coor-
dinates (k, zαz

k ) for EZ and (k, zαz

k , σ (zαz

k )) for EI
it follows that the geometric picture of (1a) is that
of a submanifold S of EI .

Confining the considerations to systems which are
described by a regular submanifold S ⊂ EI and
which do not contain any hidden constraints the
system (1a) can be rewritten as a coupled system
of difference and algebraic equations

0 = f̄αx (k, zk, zk+1) , αx = 1, . . . , nx (14a)

0 = f̄nx+αs (k, zk) , αs = 1, . . . , ne − nx (14b)

at least locally where the functions of the set
{

f̄αx , σ
(

f̄αs
)}

are functionally independent with
respect to zk+1 on S and the output functions
y

αy

k = cαy (k, zk) remain unchanged. In the case
that the system (1) contains additional hidden
constrains, the corresponding normal form (14)
is obtained by repeatedly applying the time shift
operator to the algebraic equations followed by
substitution of the difference equations, cp. again,
e.g., (Schlacher et al., 2002) for continuous-time
systems. This procedure stops, if no additional
constraints are obtained and the system is equiv-
alent to (1). The system in the form (14) is now
equivalent to an explicit one by a local diffeomor-
phism ψk : (zαz

k ) → (xαx

k , sαs

k , uαu

k ),

xαx

k = ψαx

k , αx = 1, . . . , nx (15a)

sαs

k = ψnx+αs

k , αs = 1, . . . , ne − nx (15b)

uαu

k = ψne+αu

k , αu = 1, . . . , nz − ne (15c)

where in particular sαs

k = ψnx+αs

k = f̄nx+αs

is met, such that the system reads in the new
coordinates as

f̃αx (k, xk, xk+1, uk, uk+1) = 0 (16a)

sαs

k+i = 0 , i ≥ 0 (16b)

with the algebraic restrictions in the trivial form.
Since by construction of the coordinate transfor-

mation ψ the matrix
[

∂x
αx
k+1

f̃βx

]

is non-singular,

the explicit form

xαx

k+1
= f̂αx (k, xk, uk, uk+1) (17a)

sαs

k+i = 0 , i ≥ 0 (17b)

follows immediately by the implicit function theo-
rem. It has to be mentioned that in general besides
the input uαu

k the system (17) depends on the time
shifted input uαu

k+1
also.

For the further investigations of the observability
and accessibility properties it is assumed that the
implicit system is given in the form (14) which
does not mean any restriction of generality as
mentioned before.

4.1 Observability

In analogy to the observability analysis of explicit
systems a symmetry group with an infinitesimal
generator vk = Zαz∂αz

is assumed. Since the
symmetry group may only act on the state vari-
ables and additionally the functions sαs

k of (15)
have to be invariants of this symmetry group the
restrictions

vk

(

ψne+αu

k

)

=
〈

dψne+αu

k , vk

〉

= 0 (18a)

vk

(

ψnx+αs

k

)

=
〈

dψnx+αs

k , vk

〉

= 0 (18b)

have to be met with the diffeomorphism (15). The
infinitesimal criterion for a local non-observable
system follows in a straightforward manner as

vk

(

c
αy

k

)

=
〈

dc
αy

k , vk

〉

= 0 . (19)

In contrast to the analysis of explicit systems
the conditions for the invariance of the flow of
the implicit system (1) under the transformation
group can not be stated explicitly. For this task
in general nonlinear equations have to be solved.
By studying whether there exists a non-trivial
solution for vk such that (18) and (19) hold
a criterion for observability of implicit dynamic
systems is obtained.

4.2 Accessibility

As shown for explicit systems the accessibility
considerations are based on finding an invariant
function Ik of a subset of Lie groups. The in-
finitesimal generator of these Lie groups reads
for implicit systems as vk = Zαz∂αz

. Since the



functions sαs

k of (15) must be invariants of the
considered subset of Lie groups the restrictions

vk

(

ψnx+αs

k

)

=
〈

dψnx+αs

k , vk

〉

= 0 (20)

have to be fulfilled for the corresponding infinites-
imal generator vk. The problem of strong acces-
sibility is solved by considering the infinitesimal
criterion for the invariant function Ik,

vk(Ik) = 〈ωk, vk〉 = 0 , (21)

as well as the invariance of the flow of the implicit
system (1) under the transformation group and
finding all hidden constraints.

5. NONLINEAR CONTROL

The theory of nonlinear control offers compre-
hensive controller design methods for nonlinear
continuous-time systems. However, these nonlin-
ear control laws are commonly implemented on a
digital processor in a quasi-continuous-time man-
ner by assuming that the sample time is suf-
ficiently small. E.g., in (Nijmeijer and van der
Schaft, 1991) a controller design is discussed
where it is assumed that the nonlinear dynamic
system is given in a discrete-time form.

In this contribution it is the intention to present
a nonlinear discrete-time controller design ap-
proach which is based on the knowledge of the
continuous-time control system. In particular, we
want to consider the class of nonlinear systems
that is exactly input-to-state linearizable by a
static feedback, cp., e.g., (Isidori, 1995). In a first
step, this approach is investigated for single-input
single-output control systems.

5.1 Single-input single-output systems

Let us consider a nonlinear continuous-time dy-
namic system of the form

ẋαx = fαx (t, x, u) , αx = 1, . . . , n (22a)

y = c (t, x) (22b)

which has a relative degree r = n for the consid-
ered output y. With a diffeomorphic coordinate
transformation

zαx = ϕαx (t, x) (23)

and a nonlinear control law

u = µ (t, z, v) , (24)

with new input v, the system (22) is therefore
static feedback equivalent to a linear and time-
invariant one.

By applying the diffeomorphic coordinate trans-
formation (23) to the nonlinear system (22) the
system reads in the new coordinates z as

żαx = f̄αx (t, z, u) (25a)

y = c̄αx
zαx (25b)

where the output function is linear and time-
invariant. It is now the objective of this approach
to find a discrete-time control sequence such that
the trajectories zαx of (25a) evaluated at the dis-
crete time steps kTs coincide with the trajectories
zαx

k of a desired linear and time-invariant discrete-
time control system

zαx

k+1
= aαx

βx
z

βx

k + bαxvk , αx = 1, . . . , n (26)

with input vk and sample time Ts. For this pur-
pose let us assume an n–times faster sample time
Ts,f and a control sequence (uk,0, . . . , uk,n−1),
with uk,j the on the time interval [τj , τj+1), τj =
kTs + jTs,f , constant control input of (25a). In
order to meet the desired equivalence of (25a) and
(26) at the discrete time steps kTs the n conditions

zαx (T2) = φαx
τn,τn−1

(uk,n−1) ◦ . . . ◦ φτ2,τ1
(uk,1) ◦

φτ1,τ0
(uk,0, z (T1)) (27)

follow, where the abbreviations T1 = kTs, T2 =
(k + 1)Ts are used and φαx

τj+1,τj
(uk,j , z (τj)) de-

notes the flow of the nonlinear system (25) valid
on the time interval [τj , τj+1) with control in-
put uk,j and initial value z (τj), see figure 1.
Since, in general, for a nonlinear system the

.  .  .

PSfrag replacements

t

τ0 = kTs τ1 τ2 τn−1 τn =

(k + 1)Ts

zαx(τ0)

φαx
τ1,τ0

(uk,0, z (τ0))

φαx
τ2,τ1

(uk,1) ◦ φτ1,τ0
(uk,0, z (τ0))

zαx(τn)

zαx

Fig. 1. About discrete-time control of single-input
single-output continuous-time systems under
consideration of two different sample times.

flow φαx can not be calculated explicitly an ap-
proximation, e.g., a Lie series approximation, cp.
equ. (4), can be used and the control sequence
(uk,0, . . . , uk,n−1) follows by solving the n non-
linear algebraic equations (27). This calculation
can be done at least numerically. It is worth
mentioning that the control sequence has to be
computed at time steps kTs exclusively and only
the hold element has to run with the fast sample
time Ts,f , see figure 2. Furthermore, this control
design approach passes over to the input-to-state
linearization of continuous-time systems by taking
the limit Ts → 0.

Since the obtained closed loop system is linear and
time-invariant an extensive theory for discrete-
time control design is available. Especially, the
concept of trajectory planning and trajectory



PSfrag replacements

Ts,f

Ts

Ts

Ts

Ts

Ts
Ts

S

S

H

vk

yk

x

zk

zαx

k+1
= aαx

βx
z

βx

k + bαxvk
uk,j = ϑ (k, zk, zk+1)

zαx

k = ϕαx (k, xk)

ẋαx = fαx (t, x, u)
y = c (t, x)

Fig. 2. Scheme of the single-input single-output discrete-time control concept.

tracking, see, e.g., (Fliess et al., 1995), can there-
fore be applied in discrete-time in a straightfor-
ward manner. Furthermore, it has to be men-
tioned that this approach is also applicable to
implicit systems since the corresponding formally
integrable system is at least locally equivalent to

ẋαx = fαx (t, x, u, v)

u̇= v .

5.2 Multi-input multi-output systems

Considering a multi-input multi-output system of
the form

ẋαx = fαx (t, x, u) , αx = 1, . . . , nx (28a)

yαy = cαy (t, x) , αy = 1, . . . , ny (28b)

which shows for the considered outputs yαy the
property that it is exact input-to-state lineariz-
able. Furthermore, it is assumed that the number
of control inputs is equal to the number of out-
puts, nu = ny. The approach discussed for single-
input single-output systems can be extended in
such a way that the fast sample time Ts,f is chosen
rmax–times faster than the sample time Ts where
rmax follows as

rmax = max
i=1,...,ny

(ri)

and ri are the elements of the relative degree
r =

(

r1, . . . , rny

)

. Analogously, by means of a
diffeomorphic coordinate transformation zαx =
ϕαx (t, x) one obtains the corresponding condi-
tions (27) for a multi-input multi-output system
such that the system is at discrete-time steps
equivalent to a linear and time-invariant discrete-
time one but in contrast to the single-input single-
output case (rmaxnu − nx) control inputs can be
chosen arbitrary.

6. CONCLUSIONS

This contribution deals with a Lie group approach
for the observability and accessibility analysis of

discrete-time dynamic systems described by im-
plicit difference equations. The fundamental ob-
servation that the geometric picture of the Lie
group approach for continuous-time systems is
also appropriate in the discrete-time case is the
key for these investigations. Furthermore, a non-
linear discrete-time control design for continuous-
time dynamic systems is presented. It is the ob-
jective of this design approach to find a con-
trol sequence such that the closed loop system is
equivalent to a desired linear and time-invariant
discrete-time control system. In order to solve this
problem two related sample times are used.
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