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Abstract: Synthesis of Poly(propylene terepthalate) (PPT) is normally carried out (in 
batch as well as semi-batch mode) in a  combined mixture of TPA (terephthalic acid) and 
PG (1,3-propanediol) with a suitable catalyst in two steps: esterification and 
polycondensation. Functional group modeling technique is used here to analyse the 
semibatch PPT formation system. Objectives of multiobjective optimization are to 
maximize productivity and the proportionality among desired functional groups at 
minimum possible processing time. But these conflicting objectives lead to an undesired 
population of other undesired functional groups. Several constraints are incorporated into 
the system to tackle this situation. Real-coded NSGA-II (Non-dominated Sorting Genetic 
Algorithm) has been utilized as an evolutionary optimization technique to solve the 
problem. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
PPT has been synthesised (in batch as well as semi-
batch mode) with the combination of terepthalic acid 
and PG with a suitable catalyst (Ti-complex). The 
process consists of two steps: esterification and 
polycondensation. Acid-end groups of TPA can 
catalyze the reaction with an assumption of perfect 
mixing and constant melt density. This process 
should be isothermal in nature and normally by-
products increase with temperature. Modeling works 
are not available for PPT in the open literature 
excepting the recent work by Karayannidis, et al. 
(2003). With the modeling exercise, Karayannidis, et 
al. (2003) has done a lot of experiments with 
different catalysts and ultimately recommended 
TBOT (tetrabutoxytitanium) as the suitable catalyst.  
Literature search shows no optimization study for 
PPT polymerization process till now. A proper  
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optimization study can have a critical look for the 
system and many unknown dynamics can come in 
front, which otherwise is a very tedious task. While 
performing optimization study, another important 
issue is maintaining a close proximity with the 
experimental conditions for which the model is 
tuned. Otherwise extrapolation error may drive the 
entire analysis in a wrong direction. 
Functional group model is used here to analyse the 
PPT formation system. Kinetic rate constants are 
evaluated from the experimental data available in 
open literature (Karayannidis, et al., 2003). Before 
optimization analysis, a lot of simulations have been 
done to see the various dynamics of this 
polymerization system in batch and semi-batch mode 
of process. On the other hand, those simulations also 
help in framing the definition for optimization 
problem. The main objective of optimization is to 
maximize the population of desired functional 
groups. This should lead to the formation of targeted 
polymer molecule subsequently. Time requirement 
for the entire process also has to be minimized which 
should lead to higher productivity. But this 



 

     

optimization problem faces a good population of 
other functional groups as well. Those functional 
groups are the obvious outcome of the kinetic 
scheme but at the same time not desired due to the 
probable increment of poly-dispersity index (PDI) 
for final polymer latex which may damage the 
properties of usable polymer. The above stated 
objectives are conflicting to each other and frame an 
ideal platform for multiobjective optimization 
problem (MOOP) for PPT polymerization process. 
Most of the optimization studies on polymerization 
reactors involving MOOP use weighted average 
approach (scalar approach) for solving the same 
(Deb, 2001). This approach is really inefficient as 
this not only leads to relatively poor spread in the 
Pareto set but also requires minimum as many 
simulation runs as there are distinguished desired 
points in the Pareto set. Similar fate occurs with ε-
constraint method when used to tackle MOOPs. 
Solving MOOPs using a vector of objective 
functions, where all the objectives are treated 
simultaneously to find the Pareto set, is reported to 
be much better approach (Deb, 2001). In the field of 
traditional optimization, the less robust Pontryagin 
principle or some other pattern search techniques are 
often recommended for handling optimization 
problems dealing with ingredient profiles and enough 
literature is found on application of the same. 
Unfortunately, these kinds of traditional optimization 
techniques require an excellent initial guess of the 
optimal solutions, and the results and the rate of 
convergence of the solution are very sensitive to 
these guesses. For complex systems, quite often, the 
search space becomes very narrow and one has to 
provide the initial guess within that narrow region 
which means one must almost know the optimal 
solution that one is trying to obtain. In recent years, 
an extremely robust technique, genetic algorithm 
(GA) (Goldberg, 1989; Deb, 2001), and its 
adaptations for more useful but complex 
multiobjective optimization problems, have become 
popular. These techniques have the capability of 
converging to the global optimum even in presence 
of several local optima. Simultaneously this 
algorithm is superior to traditional optimization 
algorithms in many aspects (Deb, 2001). Among 
several methods (goal attainment method, ε-
constraint method, versions of nondominated sorting 
genetic algorithm) available to solve multiobjective 
optimization problems, nondominated sorting genetic 
algorithm II (NSGA II), developed by Deb (2001), is 
used here to obtain the Pareto set. NSGA II, along 
with a tournament selection based constraint-
handling technique, developed by Deb (2000), allows 
one to get rid of the tuning problem of penalty 
parameters appearing in penalty function based 
approaches for handling constraints. Various 
applications of evolutionary techniques in different 
chemical engineering problems can be found in the 
literature (Mitra et al (2004a,2004b), Raha et al 
(2004), Garg and Gupta (1999), Bhaskar et al. (2000) 
). 
 

2. PROCESS, MODEL AND OPTIMIZATION 
PROBLEM FORMULATION 

 
In a lab scale experimental set up (Karayannidis et 
al., 2003), TPA and PG (propylene glycol) are mixed 
in a tube with fixed ratio with a catalyst. Temperature 
for this isothermal process has to be maintained at 
260°C under an argon environment and the pressure 
is atmospheric. Water is normally removed by 
distillation and collected in a graduated cylinder. 
This esterification step continues till 74% conversion 
of TPA (in terms of collected water) has been 
achieved (Karayannidis et al., 2003). For an 
isothermal process, polycondensation step is having 
the same temperature as in the esterification step with 
a high vacuum. Phosphoric acid has been added and 
the system is allowed to have a bigger chain length 
for another 1.5 hours of time. For relevant process 
issues one can refer Karayannidis et al. (2003). 

 
Table 1:.Reaction Scheme for PPT Formation 

 
TPA  +  PG   <->      tTPA + tPG +  W 
tTPA  +  PG  <->      bTPA + tPG +  W 
TPA  +  tPG  <->      tTPA + bPG +  W 
 tTPA  +  tPG <->      bTPA + bPG +  W 

            tPG  +  tPG   <->      bPG +  PG 
            tPG  +  tPG     ->      bDPG +  W 
In the table above, t implies terminal group and b 
implies repeating unit 
 
TPA: HOOC-C6H4-COOH 
PG: HO-CH2CH2CH2-OH 
tTPA: HOOC-C6H4-CO- 
tPG: HO-CH2CH2CH2-O- 
bTPA: -OC-C6H4-CO- 
bPG: -O-CH2CH2CH2-O- 
bDPG(by-pdt):-O-CH2CH2CH2-O-CH2CH2CH2-O- 
 
The complete kinetic scheme for PPT polymerization 
process is given in Table 1. The basic guiding 
equations can be referred to Karayannidis et al. 
(2003). Namely they are terepthalic acid (TPA), 
propylene glycol (PG), water (W), TPA end group 
(tTPA), PG end group (tPG), TPA repeating unit 
(bTPA), PG repeating unit (bPG) and dipropylene 
glycol repeating unit (bDPG; by-product). 
Karayannidis et al. (2003) used functional group 
approach to develop a batch process model (a system 
of highly nonlinear-coupled ODE-IVP) based on the 
kinetic scheme. The “state” of the reactor can be well 
described by a set of above mentioned 8 state 
variables, x {≡[x1, x2,…, x8]T}. The state variable 
equations, in general, can be written in the form 

dxi/dt = fi (x); i = 1, 2, . . .8;                       (1) 
where, x is the vector of the state. These equations 
are solved by RK-type numerical integration routine 
(Walas, 1991). The kinetic parameters have been 
estimated from the available experimental data from 
Karayannidis et al. (2003). The whole monomer 
profile is discritized into several points of addition 
and ingredients to be added at each of this point is 
treated as decision variables. As time is another 
decision variable in the first problem, once the 



 

     

processing time is chosen by the optimization 
routine, that time is divided into six equal locations 
and amount of ingredient to be added at those time 
points are considered as another 14 decision 
variables (for each of ingredient, there are seven 
addition points including the amount to be added at 
the zero hour plus ingredient added for other six time 
locations). The optimization of monomer profile 
means finding out optimal values of these parameters 
(to be searched within given bounds) for which the 
stated objective is met without violating the 
constraints. The optimization problem addressed in 
the present work can be expressed in the standard 
Nonlinear Programming (NLP) problem as:  
 

Objectives: Maximize DPn (Objective 1) 
Minimize Time for esterification (Objective 2) 
Minimize Abs |(bTPA/bPG)-1.0| (Objective 3) 

Decision variables: [TPA]i  where i=0, 1, 2,…., n 
[PG]i  where i=0, 1, 2,…., n 

Polymer processing time 
Constraints: Abs |(tTPA/tPG)-1.0| < Value1 

Abs |(total addition of PG/total addition of TPA)-1.2| 
< Value2 

Total addition of PG<0.72 
Total addition of TPA<0.6 

bDPG<Value3  (2) 
 
Values 1 to 3 are some numerical values coming out 
of large set of simulations and some optimization 
trials. For this multiobjective optimization problems, 
real coded nondominated sorting genetic algorithm II 
(NSGA II), developed by Deb (2001, 2000, 2004), is 
used here to obtain the Pareto set. 
The rationale behind the above optimization problem 
formulation is as follows:  
(1) Maximization of degree of polymerization (DPn) 
and proportional growth of the desired functional 
groups (which is very important for subsequent 
polymer formation) with the minimization of 
processing time for esterification step lead to 
achieving the desired polymer quality with maximum 
possible productivity; (2) It is assumed that every 
addition should get a sufficient period of time to 
establish a perfect mixing mode of operation with the 
minimizing effects for mass and heat transfer aspects 
for a reaction controlled process. This is the reason 
behind selecting a gap of minimum thirty minutes 
between any two additions of two ingredient profiles. 
Additionally, as the solubility of TPA is much less in 
the reaction medium, sufficient time has to be 
allowed to have a proper dissolution of solid TPA in 
the reaction mixture; (3) bTPA and bPG should 
produce proportionately as these two are reacting 
first to form the basic blocks for polymer repeating 
units. Same thing is valid for tTPA and tPG, but in 
this case, they act as end groups and if they are 
generated proportionately, the major polymer species 
may look like tTPA-(Repeating Unit)n-tPG; (4) 
bDPG is a by-product, so it has to be less than certain 
specified values, 0.05 mol in this case; (5) Total 
additions of TPA and PG should not be kept too 
different from the available experimental conditions 
of Karayannidis et al. (2003); (6) Basic stoichiometry 

with respect to the available experimental conditions 
(Karayannidis et al., 2003) should be maintained 
grossly. Experimental evidence shows that ratio of 
additions of PG with TPA is close to 1.2. 
Solubility parameter for TPA in PG is an uncertain 
data. Solubility value of TPA in PG is very less and 
its equilibrium solubility value is not available 
readily. It can be said (Karayannidis et al., 2003) that 
solubility of TPA can be represented as 

OLIGOLIGPGPG W.αW.αα += , (αi= solubility in i-
th species) where WOLIG is the total weight of all 
oligomers presented in the reactive medium at any 
instance and the same for PG is WPG. Solubility value 
of TPA in PG is assumed to be an arithmetic average 
value of its solubility in ethylene glycol and 
butanediol. TPA’s solubility value for oligomers is 
given by Yamada (1996). 

 
Fig 1: Effects of TPA and PG on the conversion  

 
3. RESULTS AND DISCUSSION 

 
For the process analysis, huge amounts of 
simulations have been performed to know the 
dynamic behavior of the PPT polymerization system.  

 
Fig 2: Effects of TPA and PG on the dynamics of 

bTPA 
 



 

     

Figures 1 and 2 show the effects of TPA and PG 
additions over the different performance parameters 
of the process. Here all additions have been done in 
0-th hour basis i.e. batch mode of operations. 
Conclusions from different figures are quite 
contradictory in nature.  
Conclusion from Figure 1: For higher conversion of 
 TPA, lower amount of TPA is required with higher  
amount of PG. 
Conclusion from Figure 2: For higher amount of  
bTPA, higher amount of TPA is required with higher  
amount of PG. 
 

 
 
Fig 3: Population of different species for a 

performance (Time: 121 min; DPn: 2.12) 
 
Not only, conversion and bTPA but also for the other 
variables like degree of polymerization, bPG, bDPG 
etc., the respective requirements are highly 
conflicting. These constitute a difficult optimization 
problem to be solved. One has to sacrifice some 
objective to improve other. Here, first an attempt has 
been made to improve polymer quality rather than 
substantially decreasing the processing time. If 
someone stops at early operation, he/ she may find a 
clear dis-proportionality between the desired 
functional groups (Figure 3) even for optimized data. 
This leads towards this present definition of the 
problem, where minimizing this dis-proportionality 
is an objective and obviously time frame of 
processing will substantially increase though there is 
still an effort to minimize time within given 
conditions as time is there in the objective function. 
DPn has also increased substantially compared to 
earlier observations (DPn was ~2.8; Karayannidis et 
al. (2003)). Other option to have good 
proportionality in lower processing time was to allow 
the more conversion of TPA (more than 74% as used 
by Karayannidis et al. (2003)). In that case, viscosity 
will rise stiffly and heat-transfer, fluid mechanics 
issues will be increasingly important. In this present 
study, authors tried to stick to ~74% conversion of 
TPA and efforts have been made to produce good 
proportionality among desired functional groups. 
In the present MOOP study, process is completely 
semi-batch. One can see that with increase in time, 
the extent of proportionality among bTPA and bPG 

is also increasing. It is also interesting to see that all 
three dimensions are very narrow. Constraints of the 
MOOP make the search space so narrow that 
conflicting solutions are only available inside a very 
narrow feasible domain. Population and 
proportionality of bTPA and bPG are very critical for 
the next step of polycondensation, as those will build 
the basic repeating units for the PPT polymer. To 

 
Fig 4: Multiobjective Pareto front for 3-objectives 

(Objectives: Increase in proportionality among 
desired finctional group,  Max. DPn, Min. Time) 

 
verify the claim of having a precise definition, this 
optimization problem is solved once again with little 
more allowance of TPA conversion (varying within a 
range of 74 - 85%). Result is almost similar with 
Figure 4. This is because, attaining the functional 
group proportionality in such a conflicting 
environment doesn’t have much choices to operate 
within a feasible time frame of operation. So, the 
degrees of freedom with this present optimization 
definition are much less to allow diversities in 
operations.  Figure 5 shows the optimum comparison 
for the desired functional groups like bTPA, bPG 
with the growth of undesired functional group like 
bDPG. As defined in the optimization definition, 
bDPG is very less in all the optimized operations, 
whereas bTPA, bPG are having higher amount of 
proportionality (~1.3 for the present case). It was 
seen that if the maximization of proportionality is not 
considered as an optimization objective, then bTPA/ 
bPG ratio is normally within the range of 2.5 to 3.0.      

 
Fig 5: Optimal data for some functional groups 

corresponding to Figure 4  
 
Additionally, it is worthwhile to present the 
optimization study, where productivity is taken as a 



 

     

serious issue and definitely some compromise has 
been made with the quality of polymer (more dis-
proportionality). Actually, if somebody is more 
interested in minimizing the processing time at the 
expense of some quality degradation, he/ she may 
formulate the optimization problem in the following 
way:  
Objective1: Maximize DPn 
Objective2: Minimize Time for esterification 
Objective3: Maximize (bTPA+bPG) 
Additionally, Abs |(bTPA/bPG)-1.0| has been used as 
a constraint. 
All other constraints are same as earlier. Here time is 
not a decision variable. Total reaction time is 
assumed to be 230 minutes. This whole time range is 
equally divided into 8 divisions of minimum 30 
minutes and additions are made at t = 0, 30, 60, 90, 
120, 150, 180, 210 minutes. So, if repeated for two 
profiles, this problem has 16 decision variables 
(amount of ingredient to be added at these time 
points for two profiles). Each of the simulation run 
continues till a conversion of 74% is achieved. If 
conversion is not achieved due to some chosen 
profiles of TPA and PG, simulation is terminated 
when the reaction time is reached a value of 230 
minutes, as maintained by Karayannidis et al. in their 
experimental work.  

 
Fig 6: Multiobjective Pareto front for 3-objectives 

(Objectives: Max. overall generation of desired 
finctional group,  Max. DPn, Min. Time) 

 
Figure 6 is showing the resulted Pareto. Processing 
time is much less here with low DPn value, which 
indicates dis-proportionality as well as presence of 
relatively higher amount of bDPG (by-product). One 
can see that with increase in time DPn is increasing 
with the increase in (bTPA+bPG) value. This is quite 
obvious but after a certain time (bTPA+bPG) has 
come down with saturation in terms of DPn. So the 
top portion of the multiobjective Pareto front (3D 
curve) can be a good choice for the operators where 
one can have reasonable DPn with higher value of 
(bTPA+bPG) in reasonably less processing time. 
For this problem, it has been seen that additions of 
PG are typically batch and TPA is having a semi-
batch mode of addition style for most of the 
optimized performances. Actually role of PG is dual 
in nature; it’s a reactant as well as it acts as a solvent 
to TPA specially in the initial period of reaction 
process. Later half, medium with more oligomers 

concentration will be acting as solvent. That is why, 
higher concentration of PG in the medium is having a 
critical influence specially over the initial period of 
reaction process. But for first optimization problem, 
no distinct feature of this sort is visible. This may be 
due to the fact that earlier problem definition is 
talking about much delicate objective function i.e. 
proportionality instead of overall growth of 
functional groups. So, more precise control is 
required over the polyesterification step to produce a 
good proportionality, which may be extremely 
difficult for a particular way of additions, especially 
for a non-linear system with higher conflicts like this. 
Actually, the effort here was to present a strategy for 
optimizing a reaction network though one can define 
his/ her problem formulation to get a target 
performance out of the PPT polymerization 
depending on various practical requirements.  
The effect of varying GA parameters on the obtained 
Pareto-optimal front is studied next. If the population 
size is decreased from 1000 to 500, the convergence 
rate is marginally faster, but this fastness is achieved 
at the cost of little poor spread of solutions on the 
front. The effect of reducing the crossover (from 0.9 
to 0.7) and mutation (from 0.1 to 0.01) probability 
lead to no significant change in converging and 
maintaining spread of solutions on the Pareto-optimal 
front. However, when the distribution index of the 
SBX operator is changed gradually from 0.01 to 100, 
a slightly inferior spread of Pareto-optimal solutions 
is obtained. When the distribution index for 
polynomial mutation operator is changed gradually 
from 0.01 to 100, a better spread of Pareto-optimal 
solutions is observed. In all cases, the performance is 
compared by keeping the same number of overall 
solution evaluations.  
 

4. CONCLUSION 
 

Esterification step for PPT polymerization has been 
studied with the help of a functional group based 
validated model and a state of the art evolutionary 
optimization technique. Effects of different additions 
over the process parameters reveal the huge 
contradictions among the process variables. 
Optimization study indicates batch mode addition for 
PG and semi-batch mode for TPA for optimized 
process performances when optimization drives for 
more functional groups but scope for optimum 
operation becomes narrow when quality (in terms of 
proportionality) has been chosen as an optimization 
objective. Multiobjective Pareto allows the user to 
choose a process operating condition from a set of 
equally competitive non-dominating operating points 
based on engineering judgements. Due to huge 
conflicts among variables, betterment of one process 
objective can only be done at the cost of others.  
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7. APPENDIX 
 

The GA belongs to the family of optimization 
techniques that are inspired by living nature 
(Goldberg, 1989). From the optimization point of 
view, it represents random search techniques with 
better capability of searching and capturing a global 
optimum and has been successfully applied to many 
problems. It is independent of problem definition, 
and can converge in cases for which classical 
techniques have problems of instability or do not 
converge at all. Contrary to the classical approaches, 
evolutionary multiobjective optimization (EMO) 

procedures aim at finding a finite, representative set 
of Pareto-optimal solutions in a problem. The task of 
an EMO procedure is to identify the Pareto-optimal 
front out of the entire feasible search space. This is, 
by no means, an easy task. Various optimization 
concepts must have to be used to clearly identify the 
true Pareto optimal front. Although one optimal 
solution would be chosen at the end of the 
optimization task, a knowledge of the range of Pareto 
optimal solutions is helpful in (i) choosing a 
particular optimal solution and (ii) getting useful 
insights about trade-off among objectives of the 
problem. Thus, the task of an EMO is to (i) converge 
to the true Pareto-optimal front and (ii) maintain a 
good distribution of solutions on the entire front. 
There exist a number of EMO techniques for this 
purpose (Deb, 2001). The elitist non-dominated 
sorting GA or NSGA-II procedure (Deb et al., 2002) 
for finding a well-distributed and well-converged set 
of multiple Pareto optimal solutions in a multi-
objective optimization problem is described here. 
Most of the conventional techniques lack in both the 
qualities described above.     
Like in a genetic algorithm (GA), NSGA-II starts 
with a population of Npop random solutions. In the 
Nth iteration of NSGA-II, the offspring population 
QN is first created by using the parent population PN 
and the usual genetic operators—reproduction, 
recombination, and mutation (Goldberg, 1989). 
Thereafter, both populations are combined together 
to form RN of size 2Npop. Then, a non-dominated 
sorting procedure (Deb, 2001) is applied to classify 
the entire population RN into a number of 
hierarchical non-dominated fronts. Once the non-
dominated sorting of the set RN is over, the new 
population is filled with solutions of different 
nondominated fronts, one at a time. The filling starts 
with the best non-dominated front and continues with 
solutions of the second non-dominated front, 
followed by the third nondominated front, and so on. 
Since the overall population size of RN is 2Npop, not 
all fronts may be accommodated in N slots available 
in the new population. All fronts which could not be 
accommodated are simply deleted. When the last 
allowed front is being considered, there may exist 
more solutions in the last front than the remaining 
slots in the new population. Instead of arbitrarily 
discarding some members from the last front, the 
solutions which will make the diversity of the 
selected solutions the highest are chosen. In this step, 
the crowding–sorting of the solutions of front i (the 
last front which could not be accommodated fully) is 
performed by using a crowding distance metric and 
the adequate number of solutions are picked from the 
top of the list. The crowding distance of a solution in 
a non-dominated front is a measure of crowding by 
other members of the front. In the NSGAII 
implementation, a simple measure totalling the 
objective wise distances between neighboring 
solutions is used. For details, readers are encouraged 
to refer to the original study (Deb et al., 2002). For N 
population members solving a M-objective problem, 
the computational complexity of one iteration of 
NSGA-II is O(MN2). 


