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Abstract: The increasing in-vehicle information and safety systems tend to confuse and 
distract the driver from his/her primary driving task. This paper develops algorithms for 
the real-time supervision of the traffic and environmental scenario around the vehicle for 
the optimization of the Human Machine Interaction. The proposed algorithms reconstruct 
the scenario using stochastic motion models and Kalman filters, predict the intention of 
the driver using Demspter-Shafer decision fusion and calculate the level of risk in a 
deterministic way. The algorithms will be part of the Driver – Environment – vehicle 
state estimation in AIDE Integrated project. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The development of next generation of driver vehicle 
interaction systems should be focused towards the 
objective to obtain a safe and sustainable mobility 
which has the aims to reduce the number and the 
severity of accidents while promoting the mobility 
for every user. Mobility in the future should be 
promoted towards “intermodality” to reduce traffic 
congestion and to optimise travel planning, but 
towards this aim there is an increasing demand for on 
board information systems. These needs together 
with the demand for new on vehicle support and 
services and the need of the users to be connected to 
their own information cell (mobile phone, PDA..) 
will unavoidably increase the number of interaction 
of the driver with the vehicle thus raising the 
potential risk of driver’s distraction and fatigue 
which are among the main causes of road accidents 
(Amditis, et al, 2004). 
 
The aim of the future design and development of the 
communication and the interaction between the 
driver and the vehicle should aim towards: 
(1) The harmonisation of the communication 

channels so that the information flow will be 
perceived by the driver as a single flux of 

information (from the concept of fragmented 
information to a communication flux)  

(2) Increasing drivers’ situation awareness, thus 
optimising driver’s workload, promoting a 
change in driving style, reducing distraction 
while extending the use of telematic services for 
all users. 

 
The new concept of driving will promote a 
substantial change towards “driving with safety and 
comfort” with the specific definition of the 
guidelines for the design and development of new 
on-board devices that will be supported by the user 
centred design methodology, designing the 
driver/vehicle dialogue and managing it by the 
development of an “Interaction and Communication 
Assistant” (ICA) that will define the communication 
and data exchange protocol. 
 
The adaptation of the Human Machine Interaction 
(HMI) will be based on the current state of the 
Driver, the Vehicle and the Environment (DVE 
state). A set of DVE modules are developed; each  
one  is addressing a general dimension of the DVE 
state and is supervising in real time the driver, the 
environment and the vehicle respectively. The 
dimensions of the set include primary (driving) task 



 

     

demand, secondary task demand, driver impairment 
(e.g. fatigue), driver characteristics and the 
environment/traffic scenario assessment. The 
modules will output an array of signals indicating the 
current DVE state, to be used by the Interaction and 
Communication Assistant, for adapting and 
personalizing the driver-vehicle interfaces. The 
output will include input control sensors (e.g. 
steering wheel angle sensor, pedal position sensor), 
driver sensors (head-/eye movement tracker, eyelid 
closure tracker, seat pressure sensors, posture 
sensors, steering wheel grip sensors, heart rate 
sensors etc.), environment sensors (radar, laser, IR 
etc., but also GPS and digital maps), vehicle dynamic 
state sensors (speed sensors, accelerometers, yaw 
rate sensors).  
 
This paper addresses the supervision of the traffic 
and the environment in order to contribute to the 
DVE state. The aim of the supervision is not to 
develop a detailed mapping of the traffic situation 
around the vehicle, but just to recognize the most 
imminent discrete dangers around, correlate them to 
driver’s attention and re-assess the output of the 
drivers’ state. Its aim is to enhance adaptive HMI 
user acceptance, by minimizing false alarms and 
matching warning intention to the actual traffic and 
environmental state. The module, so-called TERA 
will be part of the AIDE project, which is co-funded 
by the European Commission. 
 
In Chapter 2, the architecture and the concept of the 
proposed module is described; in chapter 3 and 4 the 
supervision and assessment algorithms are presented, 
while in Chapter 5 an algorithm is presented that can 
predict drivers’ intention to maneuver. In Chapter 6 
the risk level is generated as it will be described in 
the remainder. The paper concludes with some 
proposals for future work and implementation. 
 
 

2. TRAFFIC AND ENVIRONMENT 
SUPERVISION 

 
Traffic and Environment Risk Assessment monitors 
and measures activities outside the vehicle in order to 
assess the external contributors to the environmental 
and traffic context For example, existing sensors 
used by collision-warning (long range radars LRR), 
lane departure warning (cameras - LP), blind spot 
warning (cameras - BS), maps and positioning 
systems (NAV) combined with a table of 
corresponding roadway characteristics and vehicle 
inertial sensors (VEH) could be used to help 
understand the environment outside the vehicle and 
adapt the HMI accordingly. Inside the vehicle, 
sensors could be employed to monitor the driver’s 
attention (e.g. eye-gaze sensor); measurements like 
this one are handled as traffic parameters within this 
module (to assess traffic density for example).  Such 
parameters are coming from other DVE states and 
are not described in this paper. 
 

The supervision algorithms collect all available raw 
(e.g. radar signals), processed data (e.g. tracked 
object list) and possible warnings. The role of Traffic 
and Environmental Risk Assessment is threefold: 
• To calculate environmental and traffic parameters 

according to the requirements of the other DVE 
modules and/or warnings if a function is absent in 
the vehicle (e.g. the collision warning function 
could be produced from TERA if a radar is 
available) 

• To estimate the drivers’ intention (e.g. for 
maneuver of a possible lane change) 

• To calculate in real time a total level of risk 
related to traffic and environmental parameters 

 
In Figure 1, the architecture of TERA is indicated. 
The role of TERA is represented by the two physical 
blocks, namely the scenario reconstruction and 
assessment (bullets 1 and 2) and the risk assessment 
(bullet 3). In the same figure, the connections with 
the other components are indicated in the vehicle 
environment. The physical interfaces are out of the 
scope of the paper (e.g. CAN, TCP, etc.). An 
adequate software module is under development, to 
combine all different pieces of information from the 
various subsystems in a coherent whole, running on 

an on-board computer.  
 
 

3. SCENARIO RECONSTRUCTION  
 

The challenge in recent years as mentioned before is 
the environment recognition and reconstruction all 
around the subject vehicle so as to be able to prevent 
risks (collision, lane/road departure etc.) in the 
longitudinal, rear and lateral field. The elements that 
describe the scenario that is assessed through the 
TERA module are: 
a) the road infrastructure consisting of the lanes, the 

road borders and the infrastructure elements (e.g. 
speed limit, traffic signs) 

b) the subject vehicle and its dynamics 
c) the moving and stationary obstacles and  
d) the traffic flow representing the number of 

obstacles ahead or/and their trajectories 
 
All elements in the proposed approach are treated as 
stochastic dynamic variables described by a state 

Figure 1 - Architecture of the TERA supervision system 
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vector (based in a Kalman control system) and are 
briefly described below: 
 
a) The road borders and lanes are described by a 
clothoid model (Kirchner, et al, 1998): 
 

( ) 0

3

1

2

0 62
yxcxcxy ++=  (1) 

0y  is the offset from the ego-vehicle’s position, 0c  

is the road curvature and 1c the rate of the curvature. 

Different offsets ly0  and ry0  represent the left and 
the right border locations. Thus, the following state 
vector can describe the road (or the lane):  
 

( )T
rlRB yyccx 0010=)

(2) 
 

The measurement space includes higher level 
parameters from a camera (and its image processing 
unit for lane detection), map and positioning data and 
inertial sensors (odometer, yaw rate sensor). The 
estimated state vectors from each source of 
information is fused as in (Polychronopoulos, et al, 
2004; Swartz, 2003) in the Cartesian or in the 
coefficient space. 
 
b) The state of the subject vehicle (SV) contains 
kinematics, attributes and properties. A typical state 
vector of the former case is:  
 

( )T
SV aVx θω=)

(3) 
 
where V is the velocity, a the tangential acceleration, 
θ the heading and ω the yaw rate. A stable control 
system that predicts SV’s trajectory based only on 
dynamics is feasible and depends on the choice of 
the control system and the motion model. Constant 
acceleration, constant turn rate or more complex but 
time consuming multiple model transition matrices 
offer promising results for estimating SV trajectories 
stand alone. The prediction for the state vector in 
scan k to scan k+i, where i is ith future point given 
the measurements in scan k, is (Polychronopoulos, et 
al, 2004):  
 

( ) ( )kxAikx i
elSV ⋅=+ mod  (4) 

 
The matrix A depends on the model for the 
propagation of the state vector. The covariance 
matrix is based on the covariance of the filter P, and 
is: 
 

( ) ( ) ( )( )iTi
el

i
el AkPAikP modmod ⋅⋅=+  (5) 

 
c) The state of the obstacles contains also kinematics, 
attributes and properties such as:  
 
 ( )T

yxyxo hwaaVVyxx =) (6) 
 

where x, y are the Cartesian coordinates in a local 
coordinate system (i.e. the subject’s vehicle 
coordinate system) and V, a the relative velocity and 
acceleration respectively in the two axis. W and h 
refer to the properties of the tracked obstacles. A 
stable control system in the longitudinal and lateral 
vehicle motion (normally fusing data from vision and 
range sensors) that predicts trajectories is again 
feasible and depends on the choice of the tracker and 
the data/sensor fusion architecture. The prediction for 
the state vector in scan k to scan k+i for each 
obstacle is carried out in a similar manner as 
described in Equations (4) and (5). The measurement 
space is produced by the radar signals corresponding 
to moving obstacles due to the Doppler Effect. 
 
d) Scene Tracking algorithms for the representation 
of the traffic flow use recent range and azimuth angle 
measurements for all moving targets in the field-of-
view of the radar, along with host vehicle speed and 
yaw rate measurements, to produce at each time 
instant an overhead view image of the recent 
trajectories of all preceding vehicles. This image 
shows, in the host vehicle's current coordinate 
system, all of the locations on the road where a 
moving vehicle was sensed by the radar. Through the 
use of the track ID assigned to each vehicle by the 
range sensor system, the collection of echoes from 
each vehicle can be identified as a representation of 
the trajectory of that vehicle. In analogy to a snail 
which leaves a dotted trail on a sidewalk showing 
where it has recently been, the group of returns for a 
particular vehicle is called a 'snail trail' (NHTSA, 
2003), and each dot in a snail trail is called a 'snail 
track'. The Scene Tracking algorithm analyzes this 
image of snail trails and calculates the required 
estimates. The host's speed and yaw rate are required 
to allow a particular radar echo to properly propagate 
through successive images in response to the host's 
motion. 

 
Figure 2: Reconstruction of the scenario 
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In Figure 2, the result of the reconstruction of the 
scenario is plotted in a given situation. 
 
Other signals coming from the vehicle bus 
(Controller Area Network) or from the map data base 
assist to the correct interpretation of the scenario. 
These signals are not processed but are 
communicated through the vehicle network: 
Road data: type of road context (country, urban, 
periurban, highway, urban highway), priority level of 
the road, number of lane, speed limit, presence of 
school, etc. 
Vehicle data: blinkers status, wipers’ position, light 
position, clutch position, pedals activity. 
 
 

4. SCENARIO ASSESSMENT  
 

The scenario assessment receives high level 
information situation description from the situation 
reconstruction in terms of the traffic and the 
environmental formal description. The assessment 
produces a set of warning modalities if not available 
from a vehicle function e.g. the Adaptive Cruise 
Control – ACC unit. The modalities are classified 
according to the type of warning and its level. The 
types of possible situations are: frontal collision, 
blind spot, lane/road departure and curve 
approaching situation. The warning modality is 
extracted by comparing the value of relevant 
parameters with pre-defined fixed or adaptive 
thresholds. For each function, three modalities are 
defined: information and imminent and an 
intermediate cautionary case.  
 
Collision warnings (frontal and blind spot) are 
based on: a) Predicted Object Minimum Distance 
(PMD) parameter, that is the minimum distance 
between a vehicle and a potential obstacle predicted 
in real time (if PMD=0 then the impact is forecasted, 
if PMD> threshold, then the obstacle is not to be 
considered dangerous); b) Predicted Time to Object 
Minimum Distance (TPMD parameter), that allows 
to distinguish at least two information scenarios 
(namely, the information case and the imminent 
case). The algorithm is based on the predicted 
trajectories of the subject vehicle and the obstacles as 
defined by Equations 4 and 5. Thus, in each future 
point i=1...MaxPoints, the predicted distance (pd) is 
calculated for all obstacles and the minimum of the 
pd function is defined as PMD: 
 

)( ikpd + = d  ( )( ikxSV + , )( ikxO + ) (7) 

)(min
int...1

ikpdPMD
sMaxPoi

+=
=

(8) 

 

 
The future point i where the minimum occurs is 
defined as the TPMD point. A typical threshold for 
an imminent case is 4m and 3.5s for the PMD and 
TPMD respectively for frontal collisions.  The 
thresholds are similar to the Time – to – Collision 
parameter in car – following situations.  
 
Lane and/or road departure is based on the time to 
lane crossing (TLC) or time to road departure if 
applicable. Time to lane crossing is calculated 
dynamically as the TPMD/PMD parameters: Let the 
path of the ego-vehicle to be a set of points 
i=1...MaxPoints in the current vehicle coordinate 
system k: )}(),({ ikyikx SVSV ++ . Then TLC 
will be the time i where the path is crossing the lane 
geometry: 
 

( ) ( ))()( ikxyikxy SVRBSVSV +=+  (9) 
 

Curve waning has the aim to evaluate the risk in 
case the driver is approaching a curve too fast. The 
goal of this method is to arrive at a certain time with 
a determined velocity (the right one to route into the 
bend). This could be considered a reference speed, 
depending on the type of vehicle and curve using 
formulas; the reference speed (vf) is (ISO, 1998): 
 

0/ Cav latf =  (10) 
 

where alat = maximum lateral acceleration requested 
for the vehicle and C0 = the curvature of the road 
given by Equation 1 and 2. 
 
 

5. INTENTION OF THE DRIVER  
 

The scenario assessment is carrying out a 
complementary task which is the prediction of the 
intention of the driver based on possible overtaking 
or lane change maneuver. To detect a maneuver is 
rather simple by monitoring the steering angle or the 
lateral behaviour of the vehicle. For example if the 
derivative of the lateral offset is estimated by a 
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Figure 3: Maneuver detection 



 

     

Kalman filter and it is compared with a threshold 
then the maneuver estimator will detect all steering 
and corrective actions of the driver. In Figure 3, 600 
successive system scans are plotted for such a 
detector (0 – no maneuver, 1 left maneuver, -1 right 
maneuver); in this scenario only one overtake 
between scans 690 and 830 takes place.   
 
 
TERA module with its assessment properties uses a 
decision fusion system (vs. any other conventional 
rule based system) in order to detect lane changes a 
critical time before they occur. Thus, in order to 
solve the problem of diagnosing a lane change, 
evidence theory of Dempster-Shafer is applied to 
realize the information fusion of multi-parameter in 
determining lane changes.  
 
In the D-S theory (Shafer, 1976), the set of all 
possible outcomes in a random experiments is called 
the frame of discernment (FOD), usually denoted by 
θ. The (2θ) subsets of θ are called propositions, and 
probability masses are assigned to propositions, i.e., 
to subsets of θ. The interpretation to be given to the 
probability mass assigned to a subset of θ is that the 
mass is free to move to any element of the subset. 
Under this interpretation, the probability mass 
assigned to θ represents ignorance, since this mass 
may move to any element of the entire FOD. When a 
source of evidence assigns probability masses to the 
propositions represented by subsets of q, the 
resulting function is called a Basic Probability 
Assignment (BPA). Formally, a BPA is function: m: 
2Θ ]1,0[→ where ( ) 0=∅m and ∑

⊆

=
ΘA

Am 1)( . 

Subsets of θ that are assigned non-zero probability 
mass are said to be focal elements of m. The core of 
m is the union of its focal elements. A belief 
function, Bel (A), over θ is defined by: 
 

∑
⊆

=
AB

BmABel )()( (11) 

In the case of TERA, the FOD is θ = {lane change, 
no lane change}. It is critical to determine a basic 
probability assignment when we use the D-S model 
to match the information. Generally, the basic 
probability assignment is closely relative to the data 
type and special objective. When we established the 
basic probability assignment, we acquired knowledge 
from experts who got more useful information 
ADAS systems. The source of evidence selected is: 
1. Time to lane crossing (TLC) which is 

calculated by Eq. 9. 
2. Lateral offset which is calculated by Eq. 2 for 

the left or the right offset respectively 
3. Derivative of the lateral offset (lateral velocity)  
4. The difference between the curvature of the 

road and the Curvature that the vehicle is 

following i.e.
V

C ω
−0 , where ω is the yaw rate, 

C0 is the road curvature calculated by Eq. and V 
the velocity of the vehicle.  

5. The product of the curvature of the road and the 

Curvature that the vehicle is following
V

C ω
⋅0 ; 

if the product is negative, then this is an 
evidence of a lane change. 

 
The basic probability assignments, for each evidence, 
are calculated through proper trapezoidal fuzzy 
membership functions. An example is given in 
Figure 4 for the derivative of the lateral offset. The 
figure shows that if the value of the derivative is 
0.2m/s then 0.9 is the BPA assigned for the lane 
change and 0.1 for its negation.   
 

Assume that belief function Bel(i) are assigned to 
independent sources of evidence in same frame of 
discernment and the relevant basic probability 
assignment is m1, m2, etc. then according to 
Dumpster’s rule of combination, the new belief 
function Bel(A) and basic probability assignment 
m(A) may be yielded via:  
 

∑

∑

∩

=∩

⋅−

⋅

=

ji

ji

BA
ji

ji

ABA
ji

ji

BmAm

BmAm

Am

,
21

,
21

)()(1

)()(

)(  (12) 

 
The above equation was implemented in the lane 
change decision system with promising results. Data 
were collected and processed in real lane change 
manoeuvres; in the data set of Figure 3, where the 
ego-vehicle drifts in the lane but performs only two 
smooth lane changes (i.e. a complete overtake), the 
decision fusion system is false alarm free, while 
detects the lane change 2s before they occur. More 
data sets will be used in order to validate the 
algorithm in several scenarios by calculating false 
alarms and systems misses. It is expected that the 
introduction of a reliability factor in each evidence 
will improve the detection of the decision system 
(Rogova, et al, 2004)     
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6. RISK ASSESSMENT 
 

The TERA, at this initial stage of work, uses a 
methodology for the classification of critical traffic 
scenarios according to the imposed level of risk, as 
proposed by (Bekiaris, et al, 1999; Amditis, et al, 
2002) – a similar approach can be found in (Damiani, 
et al, 2003). Four levels of risk are proposed, as 
presented in the following table. 
 
Level of risk Description 
1 Imminent case (highest risk) 
2 Severe cautionary case (combination 

of scenarios and factors) 
3 Slight cautionary case (single scenario 

or factor) 
4 Normal situation (no risk) 
 
According to the above table the normal situation, 
when there is no risk identified, corresponds to level 
4. For each traffic situation or environmental 
parameter a risk constant is identified, which, if 
superimposed to the actual risk level, provides the 
final risk level. This means that by subtracting the 
risk constant corresponding to each situation from 4, 
we result in the level of risk for each specific case, 
with 1 being the minimum level. For example: 
 
Scenario: Front obstacle and 
rain 

Risk constant 

Initial risk level 4 
Collision warning function at 
cautionary case 

-1 

Low friction due to rain -1 
Final risk level:  2 
 
However, if the scenario assessment issues an 
imminent warning, the risk assessment step is totally 
omitted and the imminent warning is propagated to 
the ICA directly. 
 
 

 
CONCLUSIONS 

 
In this paper, a real time traffic and environment 
supervision system was presented. The so-called 
TERA module is part of the AIDE system 
architecture, where the aim is to adapt automotive 
functions and interfaces to the state of the driver, the 
vehicle and the environment e.g. delaying a phone 
call in case of an imminent warning.  
 
In the paper, it was shown, that using a proper set of 
sensors like a frontal camera, radar and map data, it 
is possible to reconstruct in real time the traffic 
scenario. The tools used were stochastic motion 
models and Kalman filters. These stochastic 
representations of the surroundings allow a correct 
assessment of the situation and a deterministic 
calculation of the level of risk. Finally, a Dempster – 
Shafer implementation was presented so that TERA 
is able of predicting the intent of the driver in a 
maneuver or a lane change. 

 
Further work includes validation work of the 
scenario assessment and algorithm refinement 
through large data sets which cover different 
scenarios. Moreover, input is needed from other 
scientific field (e.g. driver behaviour) which will 
assist to the correct risk to situation assignment as 
presented in Chapter 6. Finally, the Dempster – 
Shafer algorithm will be modified to include 
different reliabilities from the various source of 
information.  
 
TERA module will be installed in a city car from 
SEAT, a luxury car from Centro Ricerche Fiat and a 
Volvo truck and will be tested within AIDE system. 
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