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Abstract: A subspace identification algorithm for state-affine state-space systems which
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rithm depends on an approximation step where a detailed approximation error analysis is
provided. A special case is presented in which this approximation error vanishes. To tackle
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1. INTRODUCTION

Consider the generic nonlinear, discrete-time system

ξ(j + 1) = F (ξ(j), u(j)) , (1)

y(j) = H (ξ(j)) , (2)

which describes the dynamic behavior of the system
of interest. The states are denoted byξ ∈ Rn, the
inputs byu ∈ Rm and the outputs byy ∈ Rp. Many
practical applications require an accurate description
of the dynamical behavior of the system which can be
obtained either by modeling using first principles, by
identification or a combination of both approaches.

If the functionsF andH of the system (1)–(2)
are linear, we can use several well-established linear
system identification techniques to obtain a mathemat-
ical description of the system [Ljung, 1999]. Among
these methods, linear subspace identification meth-
ods [Van Overschee and De Moor, 1996, Verhaegen,
1994] are quite popular, because they are suitable
for multivariable systems and can be used to gener-
ate an initial starting point for the classical iterative
prediction-error methods. This combination of sub-
space and prediction-error methods is a powerful tool
for determining an linear system from input and output

measurements. Unfortunately, in many applications
linear systems do not provide an accurate description
of the underlying real system. Therefore, identifica-
tion methods for other descriptions, like the nonlinear
system (1)–(2), are needed.

In this paper we describe a subspace identi-
fication method for state-affine nonlinear systems.
State-affine systems can be used to approximate gen-
eral nonlinear systems up to an arbitrary accuracy.
The subspace identification technique that we present
builds upon previous results on subspace identifica-
tion for bilinear [Favoreel et al., 1999, Chen and Ma-
ciejowski, 2000, Verdult and Verhaegen, 2003] and
LPV systems [Verdult and Verhaegen, 2002], but also
incorporates structural information about the system
[Schrempf and Del Re, 2001] which allows to de-
rive an improved identification algorithm [Schrempf,
2004].

The paper is organized as follows: In Section 2
the general approximation capabilities of state-affine
systems are discussed which motivates the choice of
the model structure. A subspace identification algo-
rithm is proposed in Section 3 where a detailed ap-
proximation error analysis is provided. Finally the



proposed identification algorithm is evaluated by a
simulation study in Section 4.

2. STATE-AFFINE SYSTEMS

A state-affine state-space system can be written as
follows

x(j + 1) = Ax(j) + Nf (u(j))⊗ x(j) + (3)

Bu(j) + Mg (u(j)) ,

y(j) = Cx(j), (4)

with the statesx ∈ Rn, the inputsu ∈ Rm and
the outputsy ∈ Rp where f : Rm 7→ Rq and
g : Rm 7→ Rr are vectors of monomials of degree
up toρ. By explicitly writing the linear terms we will
stress out that the state-affine system has a nontrivial
linearization around the origin, which is a technical
requirement for the proposed identification algorithm.

Fliess [1982] shows that on a finite time inter-
val and with bounded inputs, any input-output sys-
tem which depends continuously on the inputs can be
arbitrarily well approximated by a state-affine state-
space system (3)–(4). The restriction to finite intervals
of time originates from the compactness requirements
stated by the Stone-Weierstrass approximation theo-
rem.

The requirement for a finite interval of time can
be replaced by a fading memory assumption. The con-
cept of fading-memory basically states that the output
of the system is asymptotically independent of the ini-
tial state. Boyd and Chua [1985] show that every non-
linear system represented by an input-output map with
fading memory can be arbitrarily well approximated
by a bounded polynomial input-output map. Sontag
[1979] shows that a bounded polynomial input-output
map is realizable by an observable state-affine system
of the form (3)–(4). This yields the following

Corollary 1. Every input-output system, with boun-
ded inputs and fading memory can be approximated
arbitrarily well by an observable state-affine state-
space system of form (3)–(4).

Fading memory of the input-output system and
exponential stability of the corresponding state-space
system are related. Zang and Iglesias [2003] state that
if an autonomous affine state-space system is expo-
nentially stable and fulfills some additional Lipschitz
like conditions, then the system has fading memory.
For more general state-space systems like (1)–(2) this
connection is not understood completely.

Due to its general approximation capabilities
state-affine state-space systems are proposed for ap-
proximation of the generic nonlinear system (1)–(2)
and will be considered in the sequel.

3. IDENTIFICATION

The aim is to determine a state-affine approximation
of the nonlinear system (1)–(2) using a finite number

Ns measurements of its inputs and outputs. We need
to determine the system matricesA, B, C, M , andN
of the state-affine system (3)–(4). A subspace identifi-
cation method is presented which is a direct approach
that obtains the state-space system directly [Gatt and
Kalouptsidis, 2002, Verdult and Verhaegen, 2002]. Al-
ternatively, an indirect approach could be used where
the state-affine state-space system is obtained via real-
ization of an identified difference equation [Diaz and
Desrochers, 1988, Constanza et al., 1983].

A purely deterministic setting will be consid-
ered which allows to analyze the proposed subspace
method with respect to deterministic approximation
errors. Due to these errors, the estimates of the sys-
tem matrices will be biased. These biased estimates
can be improved using a final optimization step: the
system matrices obtained by subspace identification
can be used as an initial starting point for a noncon-
vex prediction-error type of identification method as
discussed by Lee and Poolla [1996], Verdult [2002]
and Schrempf and Del Re [2001].

3.1 Assumptions

We require the state-affine system (3)–(4) to be
(A1) strongly locally observable, and
(A2) uniform exponentially stable.
Corollary 1 states that the state-affine realization is
observable which implies local observability [Alber-
tini and D’Alessandro, 1996] and thus (A1) is ful-
filled. Together with (A2) a rigorous approximation
error analysis is possible, where according to the close
connection of fading memory to exponential stability
(A2) is assumed not to be too restrictive.

3.2 Data equations

Subspace identification relies on relations between
structured matrices constructed from the outputs, in-
puts and states. We define:

Uj := [u(j), u(j + 1), . . . , u(j + c− 1)] ∈ Rm×c

Yj := [y(j), y(j + 1), . . . , y(j + c− 1)] ∈ Rp×c

Xj := [x(j), x(j + 1), . . . , x(j + c− 1)] ∈ Rn×c

F(Uj) := [f (u(j)) , . . . , f (u(j + c− 1))] ∈ Rq×c

G(Uj) := [g (u(j)) , . . . , g (u(j + c− 1))] ∈ Rr×c

wherec denotes the number of columns of the block
matrices. We also recursively define:

Yj|j := Yj ,

Yk+j|j :=

[
Yk+j

Yk+j−1|j

]
∈ R(k+1)p×c,

Uj|j :=

[
Uj

G(Uj)

]
∈ R(m+r)×c,

Uk+j|j :=




Uk+j

G(Uk+j)
Uk+j−1|j


 ∈ R(k+1)(m+r)×c,



Ũj|j :=

[
Uj

G(Uj)

]
∈ R(m+r)×c,

Ũk+j|j :=




Uk+j

G(Uk+j)
Ũk+j−1|j

F(Uk+j)¯ Ũk+j−1|j


 ∈ Rqk(m+r)/q×c,

Xj|j := [F(Uj)¯Xj ] ∈ Rqn×c,

Xk+j|j :=

[F(Uk+j)¯Xk+j

Xk+j−1|j

]
∈ R(k+1)qn×c,

F̃j|j :=F(Uj) ∈ Rq×c,

F̃k+j|j :=




F̃k+j−1|j
F1(Uk+j)

F1(Uk+j)¯ F̃k+j−1|j
...

Fq(Uk+j)
Fq(Uk+j)¯ F̃k+j−1|j



∈ Rqk×c.

whereqk = (q + 1)k+1 − 1. With the previous defini-
tions the data equations given in the following lemmas
can be obtained. These relations can be proven using
a simple induction argument as given by Schrempf
[2004] and Verdult [2002].

Lemma 1.The "future" state sequence of the system
(3)–(4) is related fork ≥ 1 to the block input, block
output matrix and the state sequence as follows:

Xk+j = AkXj + ÃkF̃k+j−1|j ¯Xj + BkŨk+j−1|j
(5)

whereAk := [Ak, Ãk] and

A1 := [A,N1, N2, . . . , Nq] ,

Ak := [AAk−1, N1Ak−1, . . . , NqAk−1] ,

B1 := [B,M ] ,

Bk := [B1, ABk−1, N1Bk−1, . . . , NqBk−1] .

Lemma 2.The block output matrix of the system (3)–
(4) depends fork ≥ 1 on the state sequence, the
extended state sequence and the block input matrix as
follows:

Yk+j|j = ΓkXj + GkXk+j−1|j + HkUk+j−1|j (6)

with

G1 :=

[
CN

0

]
, Gk :=

[
CN CAĀk−1

0 Gk−1

]
,

Ā1 := N, Āk :=
[
N AĀk−1

]
,

H1 :=

[
CB CM
0 0

]
, Hk :=

[
CB CM CABk−1

0 0 Hk−1

]

and the extended observability matrix

Γ0 := C, Γk :=

[
CAk

Γk−1

]
.

These data equations form now the basis for the esti-
mation of the state sequence as shown in the following
subsection.

3.3 Identification method

Data equations (5) and (6) form the basis for the de-
velopment of the subspace identification algorithm,
where first the state sequenceXk is estimated from
measurements and then the estimate of the state se-
quenceX̂k is used to obtain the system matrices as the
solution to the following set of least-squares problems

min
C

∥∥∥Yk − CX̂k

∥∥∥
2

2

min
A,N,B,M

∥∥∥∥∥∥∥∥
X̂k+1 − [A,N, B, M ]




X̂k

F(Uk)¯ X̂k

Uk

G(Uk)




∥∥∥∥∥∥∥∥

2

2

3.3.1. Approximation of the data equations
In order to be able to treat the identification problem
with subspace identification techniques, the state se-
quence must be expressed in terms of the input and
output measurements in such a way that the data equa-
tions remain linear in the parameters. We propose to
use the following approximating

GkXk+j−1|j = LkZj+k−1|j + Ξt
k+j−1|j (7)

where Lk denotes a unknown parameter matrix,
Zj+k−1|j a matrix which can be constructed from
input-output measurements andΞt

k+j−1|j accounts for
this approximation error. In order to derive a suitable
approximation, consider the matrixN which can be
rewritten as follows

N = Ñ1 (Iq ⊗ C) + Ñ2 (Iq ⊗ CA) + · · ·
+Ñn

(
Iq ⊗ CAn−1

)
.

Note that this is always possible since the system is
assumed to be strongly locally observable. In this case
the data-matrixZk+j|j can be constructed as follows

Zj|j :=F(Uj)¯ Yj ∈ Rpq,

Zk+j|j :=




Zk+j|j+1

F(Uj)¯



Yk+j|j
Zk+j−1|j
Uk+j−1|j





 ∈ RdZ(k)×c,

with dZ(k) = qkp+kq(p+m+r). The latter equation
relies on the fact thatΞt

k+j−1|j vanishes if the state-
affine system is of special (triangular) structure which
is a crucial result for the proposed method and will be
further discussed in Subsection 3.3.3.

3.3.2. Estimating the state sequence
Choosingj = 0 andj = k in the data equations (5)
and (6), which corresponds to split the block matrices
into two parts each of block sizek, the following set
of equations is obtained

Yk|0 = ΓkX0 + LkZk−1|0 + HkUk−1|0 + Ξk−1|0, (8)

Xk = AkX0 + ÃkF̃k−1|0 ¯X0 + BkŨk−1|0, (9)

Y2k|k = ΓkXk + LkZ2k−1|k + HkU2k−1|k + Ξ2k−1|k.
(10)



Hereby Ξk+j−1|j denotes the approximation error,
which consists of two parts,Ξt

k+j−1|j due to approxi-
mation of the data equations andΞa

k+j−1|j due to ap-
proximating nonlinear system (1)–(2) by a state-affine
system. Observe now that the "past" state sequenceX0

can be simply obtained from equation (8)

X0 = (Γk)†
(
Yk|0 − LkZk−1|0 −HkUk−1|0 − Ξk−1|0

)
.

Inserting this equation into (9) and subsequently into
(10), we see that the future output can be written as
the linear combination

Y = ΘXΦX + ΘZΦZ + ΘUΦU + Ξ (11)

with Y := Y2k|k, ΦZ := Z2k−1|k, ΦU := U2k−1|k
and

ΦX :=




Yk|0
Zk−1|0
Ũk−1|0

F̃k−1|0 ¯



Yk|0
Zk−1|0
Uk−1|0







.

whereΞ accounts for all approximation errors. Hereby
the fact was used thatUk−1|0 is included in the row

space ofŨk−1|0. By comparing equations (10) and
(11) it can be concluded, that

ΓkXk ≈ΘXΦX , (12)

where by exploiting this relation the state sequence
can be recovered up to an unknown similarity trans-
formation from the row space of matrixΘXΦX . The
singular value decomposition

ΘXΦX =
[
U1 U2

] [
Σ1 0
0 Σ2

] [
V T

1

V T
2

]
(13)

can be used for this purpose. Letn be the number of
dominant singular vales ofΣ stored inΣ1 ∈ Rn×n

which provides an estimate of the system order. Now
the future state sequence can be estimated asX̂k =
Σ1/2

1 V T
1 .

3.3.3. Approximation error analysis
The estimate of the state sequenceX̂k is influenced by
Ξ where we have

‖Ξ‖ ≤ ‖Ξ2k−1|k‖+ ‖ΓkAk(Γk)†Ξk−1|0

+ΓkÃkF̃k−1|0 ¯ (Γk)†Ξk−1|0‖ (14)

From Corollary 1, we know thatΞa
k+j|j can be ar-

bitrarily small and hence we assume thatΞ depends
mainly on Ξt

k+j−1|j = ∆GkXk+j−1|j where∆Gk

can be obtained by substitutionN ← ∆N with

∆N :=
n−2∑

i=0

n∑

j=i+2

CAiÑj

(
Iq ⊗ CAj−1

)
(15)

in Lemma 1 and Lemma 2.

The approximation errorΞt
k+j−1|j vanishes if the

state-affine system is oftriangular structure, that is, if
the system is such that

CAiN = λi (Iq ⊗ Γi) (16)

holds for i = 0, 1, . . . , n − 1 where λi denotes a
parameter matrix of suitable dimension.

To illustrate this requirement, consider (15) for
the single output case where the state-affine system is
assumed to be in canonical observable form, that is,
CAi = eT

i+1 for i = 0, . . . , n − 1, whereeT
j denotes

thej − th unity vector. Then, all terms of∆N given
by eT

i+1Ñj

(
Iq ⊗ eT

j

)
vanish if the firstj − 1 rows of

Ñj are zero. In that special case the matrixN is of
lower triangular structure which motivates to denote
such systemstriangular systems.

A detailed proof for the multiple output case
can be found in the thesis by Schrempf [2004]. This
proof shows via induction that the choice ofZk+j|j
given in Subsection 3.3.1 together with the structural
requirement (16) results is an exact solution to the
deterministic identification problem.

In the nontriangular case the approximation er-
ror will not vanish, but if the state-affine system is
uniform exponentially stable, similarly to Verdult and
Verhaegen [2002] it can be shown that the second term
of (14) decreases with increasing block sizek. Similar
results can be obtained for the case where measure-
ment noise is acting on the system: the bias due to the
noise terms will decrease with increasing block sizek.

3.4 Computational efficient algorithm

To be able to recover the state sequenceXk from equa-
tion (12) we need to estimate the parameter matrixΘX

in (11) which can be obtained by solving the following
least squares problem:

Θ̂ = arg min
Θ
‖Y −ΘΦ‖2

F , (17)

where‖ · ‖F denotes the Frobenius norm and where
ΦT = [ΦT

X , ΦT
Z , ΦT

U ] andΘ̂ = [Θ̂X , Θ̂Z , Θ̂U ].
Unfortunately, due to the multiplicative nonlin-

earity of state-affine systems, the number of rows of
the data matrices grows exponentially with block size
k. It easily exceeds the number of measurementsNs

(number of columns) for higher-order systems. To
avoid computations with data matrices having a huge
number of rows, a kernel algorithm can be used to
solve the least squares problem (17). This algorithm
only uses the kernel matrixΦT Φ ∈ RNs×Ns and not
the matrixΦ directly. In this way, computations in the
large dimensional space spanned by the columns of
Φ are avoided. The kernel method can be derived by
assuming that the solution is of the formΘ = ΨΦT .
The least squares problem (17) becomes

min
Ψ
‖Y −ΨΦT Φ‖2

F . (18)

It is easy to show that the assumptionΘ = ΨΦT does
not change the solution of the least squares problem.



A detailed discussion of these Kernel methods for
subspace identification is provided by Verdult and
Verhaegen [2003].

For the subspace identification method discussed
above, we can estimate the state sequence from the
row space of the matrix̂ΨΦT

XΦX similar to equation
(12), because

ΘΦ = Ψ(ΦT
XΦX + ΦT

ZΦZ + ΦT
UΦU )

=
[
ΨΦT

X ΨΦT
Z ΨΦT

U

]



ΦX

ΦZ

ΦU


 .

We would like to stress that to compute the estimate
Ψ̂, only the kernel matrixΦT Φ is needed.

In order to be able to approximate a nonlinear
system, state-affine systems require in many cases
high dimensional data matrices. One reason for this is
the polynomial expansion of the nonlinearities. Such
high dimensional data matrices can easily lead to
an ill-posed problem since only a limited number
of samples is available and since the input is often
not persistently exciting for such a high dimension.
Therefore, regularization of the least-squares problem
(18) is highly recommended. Tikhonov regularization
is a commonly used method. In combination with the
kernel method it results in the following least squares
problem

min
Ψ

(
λ2‖ΨΦT ‖2

F + ‖Y −ΨΦT Φ‖2
F

)
,

where λ is the regularization parameter. A proper
choice of this parameter is crucial. Standard tech-
niques involve generalized cross-validation and the L-
curve criterion [Hansen, 1999].

4. SIMULATION EXAMPLE

The proposed identification algorithm will be illus-
trated by means of a simulation example. Consider the
following nonlinear, discrete-time system

x1(j + 1) = x1(j) +
8
50

x2(j)− 1
10

tanh(x1(j))x1(j)2

x2(j + 1) =−2x1(j) +
3
20

x2(j) + u(j) +
3
5
u(j)2

+
1
10

tanh(x1(j))x1(j)2

y(j) = x1(j) + v(j)

where as input sequence a filtered zero-mean white
noise sequence with amplitudes in the range[−1.5, 1.5]
was used to simulate the output of the system. Zero-
mean white-noise measurement noise was added such
that the signal-to-noise ratio amounts approximately
10dB. A state-affine system withρ = 2 was used for
approximation.

A Monte-Carlo simulation study with50 inde-
pendent runs was performed where each identified
state-affine model was validated with a fresh inde-
pendent data set where the variance-accounted-for

Table 1. Bias of estimated matriceŝA and
the mean and variance (between brackets)
of the VAF values for different block sizes

k andNs = 500.

block sizek ‖eig(A)− eig(Â)‖ VAF
2 0.1842 0.88 (3.5 · 10−2)
3 0.2361 0.82 (7.7 · 10−2)
4 0.1236 0.93 (8.6 · 10−3)
5 0.0765 0.96 (3.0 · 10−3)

value, VAF = max {var(ŷ − y)/var(y), 0}, defines
the model quality.

The results for fixed block sizek = 2 are de-
picted in Figure 1a for the least squares approach,
and in Figure 1b for the kernel method with Tikhonov
regularization. The regularization parameter was ob-
tained from the L-curve criterion. The estimates can
be improved significantly by using the kernel method
with regularization. Figure 1c shows the results when
using a block sizek = 5 which allows to decrease
the estimation bias. The result after a final prediction
error type optimization is depicted in Figure 1d. Since
such an optimization problem is nonconvex, there is in
general no guarantee that the optimization algorithm
converges to the optimal parameter values. However,
for the performed simulation experiments the good
initial estimates provided by the proposed identifica-
tion algorithm result in models with excellent perfor-
mance.

Table 1 summarizes the results for the performed
simulation experiments where the bias of the eigen-
values of estimated matrix̂A and the VAF values for
the proposed identification algorithm are compared for
different block sizek. A clear reduction of the estima-
tion bias can be observed by increasing the block size.

5. CONCLUSIONS

A subspace identification algorithm for state-affine
state-space systems was proposed which allows to
approximate a generic state-space system. For the
proposed identification algorithm a detailed approx-
imation error analysis was performed. It was shown
that if the state-affine system is of triangular structure
the deterministic approximation error vanishes. In the
general case, the estimation bias can be reduced by
increasing the block sizek. Kernel methods can be
used to deal with the huge dimension of the involved
data matrices.

When using approximative models like state-
affine models the identification problem is in many
cases ill posed since the corresponding data equations
contain nearly redundant information or the input may
be not rich enough. By incorporating regularization
techniques this problem can be tackled.
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(a) block sizek = 2, least squares
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(d) after optimization

Figure 1. The eigenvalues of the identified matrixÂ are indicated by× whereas the eigenvalues of the identified
quadratical submatrices of̂N are indicated by· and◦ respectively. The eigenvalues of matrixA of the original
system are denoted by the big crosses.
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