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Abstract: Since 1965 the fuzzy set theory and its application have deep develop-
ment especially in many disciplines close to the automatic control of processes.
A fuzzy model has been shown to be able to approximate the behaviour of many
complex processes. Very robust fuzzy controller can be constructed in various ways.
One of them, learning algorithm, is focused in this paper while the approximation
idea has been brought from the technique called F-transform. Copyright c©2005
IFAC.
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1. INTRODUCTION

A new methodology has been brought to the con-
trol theory by L.A. Zadeh who introduced a fun-
damental idea of expressing dependencies between
variables by conditional sentences with fuzzy
predicates. These conditional sentences called
fuzzy rules made possible to use a fragment of
human language in control algorithms. An expert
knowledge is then represented in the form of fuzzy
rules forming a fuzzy rule base (FRB) for some
specific control. Such system using a fuzzy rule
base is called fuzzy rule based system and its main
advantage is a high robustness.

However, for the control of some systems the ex-
pert knowledge acquisition is not a trivial task or
transformation of such knowledge into FRB would
be technically hardly feasible. For these cases, and
not only for them, algorithms called learning are
taken into account. Usually, a learning algorithm
works with some training data obtained by one or
more experiments. These training data serve us as
a pattern of behaviour of a modeled system and
the chosen learning algorithm transforms them
into a FRB for respective control.

Although the learning algorithms provide fuzzy
rule bases describing the controlled process, these
fuzzy rule bases are not usually ready for imple-
mentation into the respective inference engines.
They suffer from complexity, redundancy or in-
consistency. To get rid of mentioned problems
many sophisticated algorithms have been devel-
oped (see Setnes et al. [1999]; Dvořák and Novák
[2004]; Novák [2001]).

The motivation of this paper is to provide a new
approach to an interpretation of fuzzy rules as
well as their construction by learning algorithm
using the extended fuzzy transform (see Perfil-
ieva [2003]). This algorithm avoids the problems
of inconsistency and redundancy. Furthermore,
it provides the user a possibility to increase or
decrease the complexity of generated FRB with
respect to user’s requirements on accuracy.

2. PRELIMINARIES

For the whole paper we restrict our focus just
on multiple-input-single-output systems. Let us
stress that although a set of multiple-input-single-
output systems is not equivalent to a multiple-



input-multiple-output system, usually, we are able
to construct such systems of the first type that
they control the process sufficiently.

Let us consider a general FRB consisting of n
fuzzy rules of the following form

IF Anti THEN Consi, 1 ≤ i ≤ n. (1)

Each type of such fuzzy rule base can be deter-
mined by a certain form of consequents Consi,
while all of them have the same form of the an-
tecedent (see Perfilieva [1999]). We can distinguish
between three such types of fuzzy rule bases.

• Singleton FRB with consequents given by
numerical values (fuzzy singletons).

• Takagi-Sugeno FRB with consequents given
as linear combinations of the input variables
appearing in respective antecedents.

• Linguistic FRB with consequents given lin-
guistically using fuzzy sets e.g. very small,
more or less big, about five, etc.

The first two types are sometimes merged be-
cause the first one is a special case of the second
one. Learning algorithm generating these types
of FRB are quite deeply investigated. Usually,
the fuzzy sets appearing in the antecedents are
determined by fuzzy cluster analysis and then the
linear combinations for consequents are generated
above the constructed fuzzy clusters. The funda-
mental method for clustering is called c-means
(see Bezdek [1981]).

The third type of FRB is, perhaps, the most
usual one and we focus on it. Let us consider a
multiple-input-single-output system with p input
variables. Each rule from such FRB is written in
the following form

IF x1 is A1
i AND · · · AND xp is Ap

i

THEN y is Fi, (2)
where 1 ≤ i ≤ n and linguistic expressions A1

i ,. . . ,
Ap

i , Fi are represented by suitable fuzzy sets A1
i ,

. . . , Ap
i , Fi.

Each rule (2) can be interpreted as a fuzzy relation
with help of fuzzy sets mentioned above. In order
to distinguish two main cases of the interpretation
of FRB, we follow the notation of I. Perfilieva (see
Perfilieva [1999]) and write Rc

i (x, y) if the relation
is given as follows

Rc
i (x, y) = A1

i (x1)t . . . tAm
i (xm)tFi(y) (3)

and Rd
i (x, y) if the relation is given as follows

Rd
i (x, y) = A1

i (x1)t . . . tAm
i (xm) →t Fi(y), (4)

where symbols t and →t mean some t-norm
and its adjoint residuum. Fuzzy relations Rc

i (x, y)
and Rd

i (x, y) are used in the following two fuzzy
relations interpreting the given FRB:

RDNF =
n∨

i=1

Rc
i (x, y) (5)

or

RCNF =
n∧

i=1

Rd
i (x, y), (6)

while formulas (5) and (6) are called disjunctive
normal form and conjunctive normal form, respec-
tively. The choice of concrete t-norm t specifies
the interpretation of the given FRB e.g. with t-
norm equal to the min operator RDNF gives the
well known Mamdani-Assilian interpretation.

3. FUZZY TRANSFORM

This section recalls specific technique of an ap-
proximate representation of a continuous func-
tion. The author of this technique, I. Perfilieva,
published a method called fuzzy transform (in
short F-transform) which is based on two trans-
forms - the direct one and the inverse one (see
Perfilieva [2003], Štepnička and Valášek [2004]).

3.1 F-transform for functions with one variable

An interval [a, b] of real numbers will be consid-
ered as a common domain of all functions in this
subsection.

Definition 1. Let xi = a + h(i − 1) be nodes on
[a, b] where h = (b − a)(n − 1), n ≥ 2 and i =
1, ..., n. We say that functions A1(x), . . . ,An(x)
defined on [a, b] are basic functions if each of them
fulfills the following conditions:

• Ai : [a, b] → [0, 1], Ai(xi) = 1,
• Ai(x) = 0 if x 6∈ (xi−1, xi+1) where x0 =

a, xn+1 = b,
• Ai(x) is continuous,
• Ai(x) strictly increases on [xi−1, xi] and

strictly decreases on [xi, xi+1],
• ∑n

i=1 Ai(x) = 1, for all x,
• Ai(xi−x) = Ai(xi+x), for all x ∈ [0, h], i =

2, . . . , n− 1, n > 2,
• Ai+1(x) = Ai(x−h), for all x, i = 2, . . . , n−

2, n > 2.

We say that fuzzy sets Ai(x) constitute a uni-
form fuzzy partition of real interval [a, b]. If we
avoid the last two conditions, fuzzy sets Ai(x)
constitute just a fuzzy partition of [a, b]. Each
basic function Ai(x) can be viewed as a fuzzy set
approximately xi.

Definition 2. Let f(x) be any continuous func-
tion on [a, b] and A1(x), . . . ,An(x) be basic func-
tions. We say that the n-tuple of real num-
bers [F1, . . . , Fn] is the F-transform of f w.r.t.
A1(x), . . . ,An(x) if

Fi =

∫ b

a
f(x)Ai(x)dx
∫ b

a
Ai(x)dx

. (7)



The F-transform transforms a function to a real
vector which serves as its discrete representation.
Real components Fi given by (7) are computed
over the whole support of Ai(x) which means that
they average all the values of f in a neighbourhood
of the node xi. This provides the robustness, for
fuzzy techniques typical, which has been used in
many applications e.g. noise reduction.

Definition 3. Let [F1, . . . , Fn] be the F-transform
of a function f(x) with respect to A1(x), . . . ,An(x).
The function

fF
n (x) =

n∑

i=1

FiAi(x) (8)

will be called the inverse F-transform.

The inverse F-transform provides an appropriate
continuous approximation of the original function.
Its form, linear combination of fuzzy sets consti-
tuting a uniform fuzzy partition, seems to be very
useful for further applications.

3.2 Generalization

In order to be able to describe a multiple-input-
single-output system, we must generalize the tech-
nique of F-transform for functions with more vari-
ables. This step has been done e.g. in (Štepnička
and Valášek [2004]). The idea of this generaliza-
tion is the same as in the case of one variable and
it will be demonstrated on the case of a function
with two variables.

Let a rectangle [a, b] × [c, d] be a common do-
main of all functions in this subsection. We de-
fine a system of basic functions as a set of ba-
sic functions A1(u), . . . ,An(u) constituting a uni-
form fuzzy partition on [a, b] and basic functions
B1(v), . . . ,Bm(v) constituting a uniform fuzzy
partition on [c, d].

Definition 4. Let f(u, v) be a continuous function
on [a, b]× [c, d] and let {Ai,Bj}n,m

i=1
j=1

be a system of

basic functions on [a, b] × [c, d]. Then the matrix
[Fij ] given as follows

Fij =

∫ d

c

∫ b

a
f(u, v)Ai(u)Bj(v)dudv

∫ d

c

∫ b

a
Ai(u)Bj(v)dudv

(9)

will be called the F-transform of f w.r.t. the given
system of basic functions.

Definition 5. Let [Fij ] be the F-transform of a
function f(u, v). Then the function

fF
n,m(u, v) =

n∑

i=1

m∑

j=1

FijAi(u)Bj(v) (10)

will be called the inverse F-transform.

3.3 Data-based model

All the definitions presented in the previous sub-
sections required continuity. It is a natural re-
quirement especially when we model systems with
physical quantities. In these cases the continuity
is necessary because quantities like temperature
or pressure cannot provide discontinuous changes.
However, integral formulas in definitions require
complex computations.

Furthermore, we usually do not have the full
knowledge of a function f but just at some nodes.
This situation is again typical even for systems
with continuous quantities. This is usually caused
by the fact that f is known only theoretically and
in practice we have a set of measurements (of e.g.
temperature)

(xk, f(xk)) k = 1, . . . , r, (11)

where f(xk) is a value of quantity f measured at
node xk.

In fact, continuous knowledge of f(x) is a limit
case of having data (11) as well as an integral
is a limit summation. Keeping this in mind, we
redefine F-transform for discrete data set.

The F-transform of function f known at nodes
{xk}r

i=1 w.r.t. some basic functions A1, . . . ,An is
given as follows

Fi =
∑r

k=1 f(xk)Ai(xk)∑r
k=1 Ai(x)

i = 1, . . . , n. (12)

For a function with two variables f(u, v) the
formula of the F-transform changes analogously.
Let us be given data

(uk, vk, f(uk, vk)) k = 1, . . . , r, (13)

then the F-transform of f w.r.t. a system of basic
functions {Ai,Bj}n,m

i=1
j=1

is given as follows

Fij =
∑r

k=1 f(uk, vk)Ai(uk)Bj(vk)∑r
k=1 Ai(uk)Bj(vk)

. (14)

4. EXTENDED FUZZY TRANSFORM

From mathematical point of view, the crucial
point of fuzzy control consists in designing a
model using fuzzy relations. In section 2, we have
mentioned that a FRB is interpreted by an appro-
priate fuzzy relation. Concrete interpretations are
given by formulas (5), (6) and by concrete choice
of t-norm t.

Having in mind all the properties of the F-
transform and its advantages including low com-
putational complexity and high speed of the re-
spective algorithms, we come to the natural idea
of an extension of F-transform for fuzzy relations.
Such extended F-transform could approximate a



fuzzy relation which serves us as an approximate
interpretation of some FRB in fuzzy control.

4.1 Fuzzy set-valued functions

In fuzzy control, instead of crisp control function
f : X → Y , we use a fuzzy relation R : X ×
Y → [0, 1] describing the control function which
is in principle unknown.

Because of physical backgrounds of the controlled
process, the crisp control function f is usually
continuous and therefore similar property will be
required for the fuzzy relation R. Therefore we
restrict the choice of approximated fuzzy relation
only to a ”continuous” fuzzy set-valued function
where, briefly said, fuzzy set-valued function is
a mapping which maps each element from its
domain to a fuzzy number.

Definition 6. Let F0(R) denote the set of fuzzy
sets F : R→ [0, 1] with the following properties:

• {x ∈ R : F(x) = 1} 6= ∅,
• Fα = {x ∈ R : F ≥ α} is a closed interval in
R for each α ∈ (0, 1] i.e. Fα = [F−α , F+

α ].

Definition 7. A mapping Φ : X ⊂ R → F0(R)
is a fuzzy relation which can be taken as a fuzzy
set-valued function.

Definition 8. Let X ⊂ R and I(R) denote the set
of all closed real intervals. Then function

ϕ : X → I(R),

x 7→ ϕ(x) = [ϕ−(x), ϕ+(x)], (15)

such that ϕ−(x), ϕ+(x) are real functions on X
will be called the interval valued function.

It has been shown (see Zhang et al. [1998]) that
Φ is a fuzzy set-valued function if and only if the
α-level function

Φα(x) = [Φ−α (x), Φ+
α (x)] (16)

of Φ(x) is an interval valued function for each
α ∈ (0, 1].

Let us define a continuous fuzzy set-valued func-
tion as a fuzzy set valued function such that for
each α ∈ (0, 1] : Φ−α (x),Φ+

α (x) are continuous real
functions on X.

For more details see e.g. (Zhang et al. [1998]) or
(Zhang and Wang [1998]).

4.2 Extension

We have used the F-transform as a technique
of approximate representation of a continuous

function. Then we have briefly mentioned fuzzy
set-valued functions as a fuzzy relations naturally
extending the notion of a real-valued function.
Such fuzzy relations could be used in formula (7)
defining the F-transform instead of the original
real-valued function. Then we obtain an extended
technique for approximate representation of a
continuous fuzzy set-valued function.

Definition 9. Let X ⊂ R, Y ⊂ R and Φ :
X → F0(Y ) be a continuous fuzzy set-valued
function. Let A1(x), . . . ,An(x) be basic func-
tions constituting a uniform fuzzy partition of
X ∈ I(R). We say that the n-tuple of fuzzy
sets [F1(y), . . . ,Fn(y)] on Y is the extended F-
transform of Φ with respect to A1(x), . . . ,An(x)
if

Fi(y) =

∫
X

Φ(x, y)Ai(x)dx∫
X

Ai(x)dx
(17)

Definition 10. Let F1, . . . ,Fn be an extended F-
transform of a continuous fuzzy set-valued func-
tion Φ w.r.t. given basic functions A1, . . . ,An.
Then fuzzy relation

ΦF
n (x, y) =

n∑

i=1

Fi(y)Ai(x) (18)

is called the extended inverse F-transform.

The generalization of the extended F-transform
for fuzzy set-valued functions with more variables
is straightforward.

5. LEARNING

This section deals with an idea of generating an
appropriate FRB for a control of some process.

5.1 Data-based model

Similarly to the subsection 3.3 we consider the
case when we have the knowledge of fuzzy
set-valued function Φ only at some nodes xk

where k = 1, . . . , r i.e. we have a set of data
(xk,Φ(xk, y)). Then the extended F-transform is
given as follows

Fi(y) =
∑r

i=1 Φ(xk, y)Ai(xk)∑r
i=1 Ai(xk)

. (19)

Formula (18) for the extended inverse F-transform
remains the same.

Analogously, in the case of a fuzzy set-valued
function depending on two variables we require
a set of data (uk, vk,Φ(uk, vk)), k = 1, . . . , r and
the formula is modified as follows

Fij(y) =
∑r

k=1 Φ(uk, vk, y)Ai(uk)Bj(vk)∑r
k=1 Ai(uk)Bj(vl)

. (20)



The extended inverse F-transform is then evalu-
ated as follows

ΦF
n,m(u, v, y) =

n∑

i=1

m∑

j=1

Fij(y)Ai(u)Bj(v). (21)

The given data is a collection of crisp values uk, vk

and fuzzy sets at these nodes Φ(uk, vk). These
data can be obtained by questioning some expert.
For example, in fuzzy control of a dynamic robot
which passes a corridor, we know a distance u
between the robot and the middle of the corridor
at each moment and we know its change v per
time. We ask some expert about a control action.
Answer could be either a linguistic expression or
a fuzzy number.

5.2 Learning algorithm

Let us now consider the mentioned case with a
dynamic robot in a corridor. Although the ap-
proach introduced above is a natural way how
to implement the extended F-transform to turn
a collection of data to a fuzzy relation (i.e. FRB),
it requires the knowledge of fuzzy sets Φ(uk, vk)
i.e. an expert estimations. In order to obtain a
learning algorithm generating an FRB from mea-
sured data while the robot is controlled manually
we must consider just crisp data.

Let us be given data (uk, vk, yk) where yk is a
measured control action at node (uk, vk). Values
yk are obtained by measuring the control actions
provided by somebody who manually controls the
robot. Such values can be imprecise and we should
consider them to be somehow approximate con-
trol actions. Therefore values yk are transformed
to fuzzy sets Φ(uk, vk) by some “fuzzification”
method to increase the robustness.

Finally, let us introduce the whole algorithm from
discrete data to an interpretation of the generated
FRB step by step. Because of simplicity we con-
sider a single-input-single-output system.

(1) Obtain training data (xk, yk) while yk is the
k-th control action and k = 1, . . . , r.

(2) Impose the fuzziness of values of yk. We get
data (xk, Φ(xk)).

(3) Construct basic functions Ai, i = 1, . . . , n.
(The choice of the shape of basic functions
and their number n is an expert decision)

(4) Construct components Fi of the F-transform
according to formula (19) w.r.t. the chosen
basic functions.

(5) Infer i.e. evaluate formula (18) defining the
inverse F-transform. This technique deals
just with fuzzy relation and does not im-
plicitly interpret an FRB. But for better
understanding we could imagine such FRB
composed by the following rules:

IF x is Ai THEN y is Fi,

where i = 1, . . . , n and Ai, Fi are linguistic
evaluating expressions represented by fuzzy
sets Ai, and Fi, respectively. Interpretation
of such FRB given by (18) could be rewritten
into the following additive form:

Φ(x, y) :=
n⊕

i=1

(Ai(x)¯ Fi(y)). (22)

(6) Use an appropriate defuzzification method.
Having in mind the shapes of used fuzzy sets,
the method COG (Center of Gravity) is such
defuzzification giving good results.

Now, let us briefly recall the basic algorithm used
for generating an FRB with the conjunctive inter-
pretation and the usage of linguistic expressions
derived from basic trichotomy.

(1) Obtain training data (xk, yk) while yk is the
k-th control action and k = 1, . . . , r.

(2) Impose the fuzziness of values of yk as well
as of values xk. We get fuzzy data (Xk,Yk).

(3) Generate an initial FRB:

IF x is Xk THEN y is Yk,

where k = 1, . . . , r and Xk, Yk are linguistic
evaluating expressions represented by fuzzy
sets Xk and Yk, respectively.

(4) Interpretation of the previous FRB is given
by the following conjunctive form:

Φ(x, y) :=
r∧

k=1

(Xk(x)) → Yk(y))). (23)

Because the number of measured pairs
(xk, yk) is usually very high (at least hun-
dreds), it is almost impossible to use the
initial FRB in practice. The complexity must
be reduced, the inconsistency removed and
redundancy decreased.

(5) Use some sophisticated algorithm for incon-
sistency elimination (see Dvořák and Novák
[2004]; Novák [2001]).

(6) Use some sophisticated algorithm for redun-
dancy analysis and decrease (see Bělohlávek
and Novák [2002]).

(7) Use an appropriate defuzzification method
w.r.t. the shapes of used fuzzy sets. Method
DEE (Defuzzification of Evaluating Expres-
sions see Bělohlávek and Novák [2002]) is
such defuzzification giving good results for
linguistically given fuzzy sets like very small
or roughly big. Method COG is suitable for
the case of the usage of fuzzy numbers.

Let us stress that the last three steps can be
avoided (at least partially), but it requires similar
analysis of data (xk, yk). Some statistical tech-
niques, clustering, averaging etc. can get rid of
data causing the redundancy and the inconsis-
tency and reduce the complexity as well.



6. CONCLUSION

The paper deal with a fuzzy rule base which is gen-
erated from given data. The algorithm providing
such results is called learning algorithm and has
been many times successfully applied in practice.
We came to the problem of a construction of an
FRB from data from the approximation problem.
Having in mind all to of applications and advan-
tages of F-transform as an approximating method
lead us to its generalization. What means that
we defined so called extended fuzzy transform for
approximate representation of a continuous fuzzy
set valued function. Discretization of such method
provides, in fact, an algorithm for data processing
returning a fuzzy relation describing a process we
controlled while obtaining data. Finally, we have
constructed an FRB with the additive interpreta-
tion which corresponds to a fuzzy relation given
by extended F-transform.
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