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1. INTRODUCTION

Infinite systems of ordinary differential equations
appear naturally in many applications, see e.g.
(Deimling, 1977; Zautykov, 1965). They involve
infinitely many variables that are to be deter-
mined, so the state space of the system is infinite-
dimensional. Usually it is some Banach space
of real sequences and Banach space theory can
be applied (Deimling, 1977; Persidski, 1959). In
control theory such infinite systems may ap-
pear if one considers the infinite extension of
a finite-dimensional system (Fliess, et al, 1997;
Jakubczyk, 1992; Pomet, 1995). The new vari-
ables are the derivatives of the control (input). In
this case it is not reasonable to impose any restric-
tions on the values of the variables, so the natural
state space is the space of all real sequences. This
space is no longer a Banach space, but it is still a
Fréchet space; see e.g. (Moszyński and Pokrzywa,
1974) for results concerning differential equations
in such spaces.
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We study here linear systems that are natu-
rally described by infinite matrices (Cooke, 1950;
Wilansky and Zeller, 1955). As the product of
such matrices is not always well defined, we re-
strict our studies to systems that are described
by row-finite matrices whose rows contain only
finitely many elements different from zero. Such
matrices form an algebra over R; in particular the
product is associative.

The main problem studied in this paper is ob-
servability. Thus we extend the system of dif-
ferential equations adding the output equations.
Observability is easily characterized as injectivity
of the operator defined by the Kalman observ-
ability matrix (infinite but row-finite again). How-
ever checking injectivity is in general not easy. A
necessary condition for this is the infinite rank
of the Kalman matrix, but this is far from being
sufficient. We show that a necessary and sufficient
condition for injectivity is existence of a row-
finite left inverse of the Kalman matrix. This is
equivalent to the fact that any state variable can
be expressed as a linear combination of finitely



many outputs and their derivatives. We provide
several examples that illustrate the results.

Observability of discrete-time systems described
by row-finite matrices was studied by Bartosiewicz
and Mozyrska (2001).

2. ROW–FINITE MATRICES

Let I, J,K be nonempty countable sets. Consider
the countable product RK =

∏
k∈K R as the

set of all functions K → R. If K = N, then
RN is the linear space of all infinite sequences
of real numbers represented by infinite columns
x = (x1, . . . , xi, . . .)T , xi ∈ R, i ∈ N. Let K = I ×
J. Then each element A ∈ RI×J , A : I × J 3
(i, j) 7→ aij ∈ R, is called an I×J matrix. We will
denote it in the standard way A = (aij)i∈I,j∈J .

By EI = (δij)i,j∈I , where δij = 0 for i 6= j, δii = 1,
we denote the identity matrix in RI×I .

Let us consider a matrix A = (aij) in RI×J .
The transpose of A is a matrix AT ∈ RJ×I ,
AT = (bji)j∈J,i∈I , bji = aij . The set RI×J is a
linear space over R with the standard operations.

Let I be a countable set. Let
∑

i∈I ai be a series of
elements of a linear metric space (X, d). We say
that the series

∑
i∈I ai converges to an element

c, called the sum of the series, if for every real
number ε > 0 there is a finite set Sε ⊂ I such that
for every finite set S ⊃ Sε : d

(∑
i∈S ai, c

)
< ε.

The series is convergent if it converges to some c.
Observe that we do not need an order in I and
grouping does not change the sum. If X = R
with the standard metric, then a series

∑
i∈I ai

is convergent if and only if the series
∑

i∈I |ai| is
convergent (Ruiz, 1993).

Now let A ∈ RI×J , B ∈ RJ×K . Then the product
AB = (cik)i∈I,k∈K is well defined if the series
cik =

∑
j∈J

aijbjk is convergent for each (i, k) ∈ I ×

K.

A matrix A = (aij)i∈I,j∈J , is called row–finite if
for each i ∈ I the set SA(i) := {j ∈ J : aij 6= 0} is
finite. Similarly, a matrix whose transpose is row–
finite is called column–finite. The identity matrix
EI is row–finite and column–finite.

Proposition 2.1.

(1) The set of row–finite matrices from RI×I

forms an algebra over R with a unit – the
identity matrix EI .

(2) The set of column–finite matrices from RI×I

forms an algebra over R with a unit.

Remark 2.2. The associativity of multiplication
is the most essential property for row–finite
(column–finite) matrices from RI×I . It does not

hold for all infinite matrices, however. For exam-
ple, if I = N, b = (1, 1, 1, . . .) ∈ R{1}×N and

A =


1 −1 0 0 0 . . .
0 1 −1 0 0 . . .
0 0 1 −1 0 . . .
...

. . . . . . . . . . . . . . .

 , then (bA)bT = 1

and b(AbT ) = 0.

Let I, J be countable sets and let A ∈ RI×J ,
B ∈ RJ×I . If AB = EI , then B is called right
inverse of A and is denoted by A′. Similarly, then
A is called left inverse of B and is denoted by ′B.
If I = J and AB = BA = EI then B is called
two–sided inverse of A and is denoted by A−1.

Let A ∈ RJ×I be row–finite. Then by A we denote
the mapping RI → RJ , ∀x ∈ RI : A(x) = Ax.
Observe that A is well defined and linear.

Proposition 2.3. If a row–finite matrix A has a
row–finite left inverse ′A, then the mapping A is
injective.

Example 2.4. (Wilansky and Zeller, 1955) Let

I = J = N and A =


1 −1 0 0 0 · · ·
0 1 −1 0 0 · · ·
0 0 1 −1 0 · · ·
...

...
. . . . . . . . . . . .

.

Then A is not injective, because for x =
(1, 1, . . .)T : A(x) = Ax = 0. However the matrix:

B =


1 1 1 1 · · ·
0 1 1 1 · · ·
0 0 1 1 · · ·
...

...
...

. . . . . .

 satisfies AB = BA = EN,

so it is a two–sided inverse of A. But B is not
row–finite.

3. ROW–FINITE SYSTEMS OF
DIFFERENTIAL EQUATIONS

Let x : [0,∞) 3 t 7→ x(t) ∈ RI be a differen-
tiable function. The system of differential equa-
tions ẋ(t) = dx

dt (t) = Ax(t), where A ∈ RI×I is
a row–finite matrix, is called a row–finite system.
The function x is its solution. Let us consider the
initial value problem

ẋ = Ax, x(0) = x0 ∈ RI , (3.1)

where A is a row–finite matrix.

For I = N the discussion of existence and unique-
ness of solutions of the initial value problem (3.1)
can be found, e.g., in (Deimling, 1977). In Propo-
sition 3.1 we extend Theorem 6.2 of (Deimling,
1977) to the general countable case.

Proposition 3.1. Let A = (aij)i,j∈I . Assume that
there exists a sequence (Sn)n∈N of finite subsets



of I such that for each n ∈ N : Sn ⊂ Sn+1,∑
i∈N Sn = I and SA(i) ⊂ Sn for i ∈ Sn. Then the

initial value problem (3.1) has a unique solution.
Otherwise, the problem (3.1) has infinitely many
solutions.

If A is row–finite matrix then for each k ∈ N :
Ak = Ak−1A is row–finite too. In most cases the
exponential matrix is not well defined. But if for
example I = N and A is a lower diagonal matrix
then the exponential matrix eAt = I+At+A2 t2

2! +
· · · is well defined (Cooke, 1950). And then for all
x0 ∈ RN the problem (3.1) has the unique solution
x(t) = eAtx0. If A is row–finite and is not lower
diagonal we can lose the uniqueness of solutions
and eAt may not exist even for I = N.

Example 3.2. Let I = N ∪ {0}, dxi

dt = xi+1, i ≥ 0
and x(0) = x0 = 0 ∈ RI . Then the solution is pro-
duced by an arbitrary smooth function ϕ = ϕ(t)
such that dkϕ

dtk (0) = 0, k = 0, 1, 2, . . . , and xk(t) =
dkϕ
dtk (t), k ∈ I. Since there are infinitely many such
functions (they differ by “flat” functions with all
derivatives at t = 0 equal 0), we have infinitely
many solutions. The corresponding matrix for this

system A =


0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
...

...
...

. . . . . . . . .

 has well defined

exponential matrix eAt =


1 t

t2

2!
t3

3!
. . .

0 1 t
t2

2!
. . .

0 0 1 t . . .
...

...
. . . . . . . . .

. In

spite of that the product eAtx0 may not exists as
eAt is not row-finite. Observe that the condition
of Proposition 3.1 does not hold.

The above discussion shows that an initial value
problem (3.1) may have infinitely many smooth
solutions. To have uniqueness we consider formal
solutions and use formal power series. Let A ∈
RI×I be row–finite and x ∈ RI . Then we define
a vector of formal power series corresponding

to A and x0 by Γx0,A =
∞∑

k=0

tk

k! A
kx0. Observe

that for each k ∈ N the power Ak is row–finite,
hence Akx0 ∈ RI exists. Let (Ak)i denotes the
i–th row of the matrix Ak. Then Γx0,A is a
countable family of formal power series of the form{ ∞∑

k=0

tk

k! (A
k)ix

0

}
i∈I

.

Proposition 3.3. Let A be a row–finite matrix.
Then for all x0 ∈ RI the initial value problem

(3.1) has the unique formal solution Γx0,A =
∞∑

k=0

tk

k! A
kx0.

Proof: Observe that the constant term of the series

is x0 and d
dtΓx0,A =

∞∑
k=0

tk

k! A
k+1x0 = AΓx0,A.

2

If Γx0,A is convergent then we have an analytic
solution.

4. OBSERVABILITY CONDITIONS

In this section we are concerned with the system
with output:

(ΣI,J) :
ẋ(t) = Ax(t)
y(t) = Cx(t), (4.1)

where x : [0,∞) → RI , y : [0,∞) → RJ , and
A ∈ RI×I and C ∈ RJ×I are row–finite. Let
x0 ∈ RI . Given a formal solution Γx0,A of the
dynamical part of the system and corresponding
to the initial condition x0 we define the formal
output: Yx0 = CΓx0,A. This is a family of formal
power series indexed by J .

Definition 4.1. We say that x1, x2 ∈ RI are indis-
tinguishable (with respect to ΣI,J) if Yx1 = Yx2 .
Otherwise x1, x2 are distinguishable. We say that
the system ΣI,J is observable if every two distinct
points are distinguishable.

Proposition 4.2. The points x1, x2 ∈ RI are in-
distinguishable iff for all k ∈ N ∪ {0} : CAkx1 =
CAkx2.

Proof: Yx1 = Yx2 ⇔
∞∑

k=0

tk

k! CAkx1 =
∞∑

k=0

tk

k! CAkx2

⇔ ∀k ∈ N ∪ {0} : CAkx1 = CAkx2. 2

For each n ∈ N ∪ {0} we define the countable set
Jn = J . Then the disjoint union K =

⋃
n∈N∪{0} Jn

is also countable.

Let D = (dki) be a K × I matrix whose k-th row
is equal Dk = CkAn for k ∈ Jn. If C has only
finitely many rows, that is when J is finite, the
matrix D can be written in the following way:

D =

 C
CA
...

 .

Let D(x) = Dx,D : RI → RK . From Proposi-
tion 4.2 we get a similar characterization of ob-
servability as in the finite-dimensional case.

Proposition 4.3. ΣI,J is observable ⇐⇒ D is in-
jective.



Let D|S denote the matrix obtained from D by
choosing only rows with indices in the set S ⊂ K.
The following theorem gives an important charac-
terization of observability of row-finite systems.

Theorem 4.4. ΣI,J is observable ⇐⇒ for every
i ∈ I there is a finite Si ⊂ K such that D|Si

x = 0
⇒ xi = 0.

The proof of Theorem 4.4 is given in Section 6.

Remark 4.5. Theorem 4.4 says that for an ob-
servable row-finite system one can decide that
a variable xi is equal 0 on the basis of only
finitely many equations from the infinite system
Dx = 0. This looks natural, but is not obvi-
ous. It is a consequence of row-finiteness of D
and does not hold in general. For example, if

D =



0
1
2

1
4

1
8

. . .

1
2

0
1
8

1
16

. . .

1
4

1
8

0
1
32

. . .

1
8

1
16

1
32

0 . . .

. . . . . . . . . . . . . . .


then it can be shown

(Cross, 1963) that Dx = 0 implies x = 0. However
to decide that x1 = 0 one has to use all the
equations of the system.

Let ei, i ∈ I be the infinite row with 1 at the
i-th position and 0 at other positions and let
Ei : RI −→ R, for x ∈ RI : Ei(x) = eix. Then
we have another characterization of observability.

Proposition 4.6. System ΣI,J is observable iff
∀i ∈ I ∃Si = {k1, . . . , kni

} ⊂ K ∃{a1, . . . , ani
} ⊂

R : ei = a1Dk1 + · · ·+ ani
Dkni

.

The proof of the above fact relies on Theorem 6.9,
shown in Section 6.

Remark 4.7. Since the rows of D correspond to
derivatives of the output, one can characterize
observability as possibility to compute every state
variable as a linear combination of finitely many
outputs and their derivatives.

If C has finitely many rows then for all 0 ≤ k < ∞
the rank of the matrix

(
C . . . CAk

)′
is finite.

Corollary 4.8. System ΣI,J with J finite is ob-
servable iff ∀i ∈ I ∃ki ∈ N ∪ {0} :

rank

 C
...

CAki

 = rank


C
...

CAki

ei

 .

The following proposition gives a sufficient condi-
tion for observability.

Proposition 4.9. Let D = (dki)k∈K,i∈I . Assume
that for every i ∈ I there exist finite Si ⊂ K
and Ti ⊂ I such that i ∈ Ti, for every k ∈ Si :
SD(k) ⊂ Ti and rank (dkj)k∈Si,j∈Ti

= Ti. Then
ΣI,J is observable.

Proof : Let for i ∈ I, Si ⊂ K, Ti ⊂ I be as in the
assumption. Then for all x ∈ RI : D|Si

x = 0 ⇒
∀(j ∈ Ti)xj = 0. Hence D is injective and ΣI,J is
observable. 2

Let D = (dij) ∈ RI×J and let S1 ⊂ I, S2 ⊂ J
be finite sets of the same cardinality k. Then
by a minor of the order k we will mean the
determinant: |(dij)i∈S1,j∈S2 | . To calculate this
we need some orders in S1 and S2. The minors
depend on the orders, but different orders may
only change signs of the minors.

It is easy to show the following necessary condition
of observability.

Proposition 4.10. If Σ is observable then rankD =
∞.

5. EXAMPLES

Example 5.1. Let us consider the following sys-
tem, for I = J = Z :

f2k−1(x) = x2k−1 + x2k + x2k+1 = 0
f2k(x) = x2k + x2k+1 = 0

}
, k ∈ Z

The above system has a unique solution x = 0 ∈
RZ and we can compute every xi from finitely
many functions fj : x2k−1 = f2k−1 − f2k and
x2k = f2k − f2k+1 + f2k+2. For any k ∈ N take
S = S1 = S2 = {1, . . . , k}. Then the minor of the
matrix of coefficients defined by k is nonzero.

Example 5.2. Let us consider a system in the
following form: (ΣZ,N) : ẋk = xk+1, k ∈ Z, yn =
x−n, n ∈ N. The matrices of this system are:
A = (aij)i∈Z,j∈Z, ai,i+1 = 1 and for j 6= i +
1 : aij = 0, C = (cij)i∈N,j∈Z, ci,−i = 1, and for
j 6= −i : cij = 0. Observe that for k ∈ N ∪ {0} :

CAkx =

 xk−1

xk−2

...

 . Hence the map D for this

system is injective and the system is observable.

Now let us change the output so that it is finite-
dimensional: (ΣZ,S) : ẋk = xk+1, k ∈ Z, y =(
xs1 , xs2 , . . . , xsn

)′
, where S = {s1, s2, . . . , sn} ⊂

Z. In this case for k ∈ N ∪ {0} : CAkx =(
xs1+k, xs2+k, . . . , xsn+k

)′
. Hence ΣZ,S is not ob-

servable (e.g. x1 and x2 such that x1
i 6= x2

i for some
i < s1 are indistinguishable).



Example 5.3. Let the system ΣN,{1} be in the
following form

ẋ2n−1 = x2n − x2n+2 − x2n+3

ẋ2n = x2n+1 + x2n+3 + x2n+4 + x2n+5

y = x1 + x2 + x3

, n ∈ N.

Then the matrix

D =

 C
CA
...

 =


1 1 1 0 0 0 . . .
0 1 1 0 0 0 . . .
0 0 1 1 1 0 . . .
0 0 0 1 1 0 . . .
...

...
...

...
. . . . . . . . .

 .

Observe that the equation Dx = 0 is that of
Example 5.1. The system is observable but the
condition from Theorem 4.9 is not satisfied.

Example 5.4. Let us consider the partial differen-
tial equation describing heat transfer in an infinite
rod ∂u

∂t = ∂2u
∂2x . Let us discretize the equation

with respect to x variable with the step equal 1.
Let uk(t) = u(t, k) for k ∈ Z. Then we obtain
an infinite system of linear ordinary differential
equations parameterized by Z:

u̇k = uk−1 − 2uk + uk+1. (5.1)

Let us assume that we observe one of the variables,
for instance let the output be y = u0. Then the
entries of the (N∪{0})×Z matrix D have the form:

dki =
(

2k
i + k

)
(−1)k+i, where k ≥ 0, i ∈ Z and(

n
j

)
= 0 whenever j < 0 or j > n. The equation

Du = 0 has infinitely many solutions. Every u ∈
RZ satisfying the condition u−i = −ui is a solution
of this equation, so (5.1) with the output y = u0

is not observable. To get observability one can
extend the output to the following: y1 = u0, y2 =
u1. Then the matrix D satisfies the condition from
Proposition 4.9 and the system is observable. In
general, we get observability if we observe two
subsequent variables uk and uk+1. On the other
hand, observing infinitely many variables does not
guarantee observability.

6. PROOF OF THEOREM 4.4

Let us first recall some facts from functional
analysis.

The space RI with the product topology is metriz-
able. However there is no norm for this topology,
so RI is not a Banach space.

Recall that a linear topological space is called a
Fréchet space if it is metrizable, complete and
locally convex. Note that RN is a Fréchet space
(Banach, 1932). Similarly, for any countable set I
the space RI is a Fréchet space.

The following fact was proved in (Banach, 1932)
for I = N. This can easily be extended for an
arbitrary countable set I.

Proposition 6.1. A function f : RI → R is linear
and continuous iff there is a finite set S ⊂ I and
a set of real numbers {ai}i∈S such that for all
x ∈ RI : f(x) =

∑
i∈S

aixi, where xi = x(i).

Let I be a countable set. By R(I) we denote the
set of those x ∈ RI that have only finite number of
nonzero elements. So, if x ∈ R(I) then x is column-
finite. The set R(I) is a linear subspace of RI .

Let (RI)∗ = {x∗ : RI → R : x∗ is linear
and continuous} be the dual space to RI (in the
functional–analytic sense).

Corollary 6.2. Let I be countable. Then
(
RI

)∗ is
isomorphic with R(I).

Remark 6.3. The algebraic dual space to RI is
much bigger than R(I) and is not easy to describe.
But the algebraic dual to R(I) is just RI .

It is easy to verify the following statement.

Proposition 6.4. Let I, J be countable sets. A
map F : RI → RJ ,F(x) = (Fj(x))j∈J , is
continuous iff every Fj : RI → R, j ∈ J, is
continuous.

Corollary 6.5. A linear map F : RI → RJ is
continuous iff it is represented by a row–finite
matrix F ∈ RJ×I (i.e. ∀x ∈ RI : F(x) = Fx).

The following proposition is a direct extension
of Toeplitz’s theorem proved in (Wilansky and
Zeller, 1955) for I = J = N.

Proposition 6.6. Let D ∈ RJ×I be a row–finite
matrix and D : RI → RJ , D(x) = Dx. Then
y ∈ imD iff

∀v ∈ R(J) : vT D = 0 ⇒ vT y = 0.

Proposition 6.7. Let D ∈ RJ×I be row–finite.
Then imD is closed in RJ .

Proof : Let y(n) ∈ imD, limn→∞ y(n) = y. Then,
from Proposition 6.6, ∀n ∈ N ∀v ∈ R(J) : vT D =
0 ⇒ vT y(n) = 0. From Corollary 6.5 the map
RJ 3 x 7→ vT x ∈ R is continuous, so vT y = 0 as
well. Thus y ∈ imD. 2

Let us observe that a closed linear subspace of a
Fréchet space is a Fréchet space too. Moreover we
have the following fact about mappings between
Fréchet spaces.



Theorem 6.8. (Banach, 1932) Every linear contin-
uous bijection between Fréchet spaces is a home-
omorphism.

The following theorem is essential in studying
observability.

Theorem 6.9. Let D ∈ RJ×I be row–finite and
D(x) = Dx for x ∈ RI . The mappingD is injective
iff there exists a row–finite left inverse of D.

Proof: The “if” part is exactly Proposition 2.3.

To prove the converse suppose that D is injective.
Let Y = imD ⊂ RJ . Then Y is closed in RJ .
Hence D : RI → Y is a linear continuous bijection
between Fréchet spaces. From Theorem 6.8 we
get that F = D−1 : Y → RI is a linear and
continuous mapping. We denote by F̃ : RJ → RI

a mapping that is linear and continuous and for
all y ∈ Y : F̃(y) = F(y). Such a mapping exists by
Hahn–Banach Theorem (Taylor and Lay, 1980).
Then for all x ∈ RI : F̃(D(x)) = x. Therefore
F̃ ◦ D = idRI . As F̃ is linear and continuous,
then it is represented by a row–finite matrix (from
Corollary 6.5). Let F̃(x) = Fx, where F ∈ RI×J

is row–finite. Then ∀x ∈ RI : (FD)x = F (Dx) =
F̃(D(x)) = x. Hence FD = EI , so F = ′D. 2

The statement of the following proposition gives
in fact Theorem 4.4.

Proposition 6.10. D : RI → RJ is injective iff
∀i ∈ I ∃ finite Si ⊂ J : ∀x ∈ RI(

D|Si
x = 0 ⇒ xi = 0

)
. (6.1)

Proof : If D is injective then, from Theorem 6.9,
there is a row-finite ′D ∈ RI×J such that for
x ∈ RI : ′D(Dx) = x. Let ′D = (aij)i∈I,j∈J . Then
for all i ∈ I : ′D|{i} = (aij)j∈J . Let Si = S′D(i).
Then xi = ′D|{i}(Dx) =

∑
j∈Si

aijD|{j}x =
(aij)j∈SiD|Si

x. Hence, if D|Si
x = 0 then xi = 0.

On the other hand, assume that (6.1) holds and let
Dx = 0. Take i ∈ I. Then D|Si

x = 0, so by (6.1)
xi = 0. This gives the injectivity of D. 2

Corollary 6.11. Let us consider an infinite count-
able system of linear equations: fj(x) =

∑
i∈I ajixi =

0, (j ∈ J), where for each j only finitely many
coefficients aji 6= 0. The above system has exactly
one solution x = 0 ∈ RI if and only if for every
i ∈ I there exists finite set Si ⊂ J such that
xi =

∑
j∈Si

bijfj(x) for some bij ∈ R.

7. CONCLUSION

We studied here observability of linear systems
described by infinitely many differential equations

involving infinitely many variables. Such systems
may serve as models for many real life phenomena
or come from partial discretizations of systems
given by partial differential equations.
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