
ROBUST CONTROL WITH YOULA PARAMETRIZATION OF
YEAST FED-BATCH CULTURES

F. Renard ∗,1 A. Vande Wouwer ∗ S. Valentinotti ∗∗ D. Dumur ∗∗∗
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Abstract: Optimal productivity ofS. cerevisiaecultures can be achieved through the regu-
lation of the ethanol concentration at a low value. In this study, a robust control strategy
is developed, which requires very little knowledge about the process, i.e. only one yield
coefficient and the on-line measurement of the ethanol concentration. A Youla parametriza-
tion is selected in order to reject asymptotically the exponential growth disturbance and
to robustify the control scheme against unstructured uncertainties and measurement noise.
The performance of the control scheme is illustrated with real on-line experimental data.
Copyright 2005 IFAC.
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1. INTRODUCTION

Saccharomyces cerevisiaeare among the most popu-
lar industrial microorganisms for their robustness and
ability to utilize cheap materials for growth and pro-
duction. They have been used since the very early days
of microbial fermentation history for brewing wine
and beer. Recently, with achievement of modern gene
technology,S. cerevisiaecan be used as host organ-
isms for production of recombinant proteins (produc-
tion of insulin, vaccines, . . . ).

Due to the economic importance of these products,
there is an obvious motivation to maximize the bio-
mass productivity of the process. One method com-
monly used to ensure optimal operating conditions
consists in regulating the ethanol concentration at a
low value. Several methods have been proposed to this
end (see, e.g. Chenet al., 1995; Pomerleau, 1990).
However, they often require an extensive knowledge
of the reaction scheme stoichiometry and several on-
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line measurements (dissolved oxygen, oxygen uptake
rate, dissolved carbon dioxide and carbon dioxide pro-
duction rate, . . . ).

This study develops a strategy for robust control of
the ethanol concentration assuming the knowledge of
only one stoichiometric coefficient and only one on-
line measurement: the ethanol concentration. Follow-
ing the line of thought of Valentinottiet al. (2003),
two simple linear models are derived from the global
non linear model of Sonnleitner and Käppeli (1986).
The first model depicts the relationship between the
substrate feed and the ethanol production, while the
second model describes the exponential cell growth.
Therefore as far as the regulation of the ethanol con-
centration is concerned, the exponential cell growth
can be considered as a disturbance to be rejected.

Then, an original control strategy which uses a RST
controller with a Youla parametrization is developed.
The Youla parameter is chosen in order to reach two
objectives:

• An asymptotic rejection of the exponential growth
disturbance (Valentinottiet al., 2003). As the



growth rate can evolve during the culture, an
adaptive version of the robust control algorithm
is also considered.

• An improvement of the robustness against un-
structured uncertainties and a reduction of mea-
surement noise on the control signal (Rodriguez,
2003).

A particular structure of the Youla parameter is chosen
in order to take account of these two objectives with
two stable transfer functions. The design of the first
one is based on the internal model principle whereas
the second one results from a convex optimisation
problem expressing the frequency and temporal con-
straints of the second objective.

2. MODELING OF YEAST FED-BATCH
CULTURES

2.1 Nonlinear dynamic model

The metabolism of yeast depends strongly on the
culture conditions. During the aerobic growth, glucose
and ethanol can be used as carbon sources according
to the following reaction scheme:

Glucose oxidation : G+k5O
r1→ k1X +k7P (1a)

Glucose fermentation : G
r2→ k2X +k4E+k8P (1b)

Ethanol oxidation : E+k6O
r3→ k3X +k9P (1c)

where X, G, E, O, P are, respectively, the concen-
tration in the culture medium of biomass, glucose,
ethanol, dissolved oxygen and dissolved carbon diox-
ide, andki are the pseudo-stoichiometric coefficients.

The reaction rates associated with these reactions are:

r1 = min

(

rG,
rOmax

k5

)

(2)

r2 = max

(

0, rG−
rOmax

k5

)

(3)

r3 = max

(

0,min

(

rE,
rOmax−k5 rG

k6

))

(4)

The kinetic terms associated with the glucose con-
sumptionrG, the respiratory capacityrOmax and the
potential ethanol oxidative raterE are:

rG = µG
G

G+KG
, rOmax= µO

O
O+KO

, rE = µE
E

E+KE

whereµG, µO andµE are the maximal values of spe-
cific growth rates,KG, KO andKE are the saturation
constants of the corresponding substrate.

This kinetic model is based on the bottleneck hypoth-
esis developed by Sonnleitner and Käppeli (1986). It
assumes a limited oxidation capacity of yeast, leading
to the formation of ethanol under conditions of oxy-
gen limitation and/or high glucose concentration. The
glucose concentration at which the oxidative capacity

saturates is defined asGcrit , for which rG = rOmax/k5.
According to the glucose concentration value, two
different operating regimes can be distinguished. At
low glucose concentrations (G≤ Gcrit ), the system is
said in respirative regime. The glucose consumption
rate is smaller than the maximal respiratory capacity
(rG ≤ rOmax/k5) and the rate of the oxidative glucose
metabolism is determined by the glucose consump-
tion rate (2). Whereas, at high glucose concentrations
(G≥ Gcrit ), the system is said in respiro-fermentative
regime. The glucose consumption rate is larger than
the maximal respiratory capacity (rG ≥ rOmax/k5) and
the respiratory capacity of the cells determines the rate
of the oxidative glucose metabolism (2). If the glucose
flux is higher than the maximal respiratory capacity,
the excess of glucose will be metabolized by the fer-
mentative metabolism (3). If the glucose flux does
not take up the whole respiratory capacity of the cell,
ethanol may be oxidized in parallel with glucose and
the rate of the oxidative ethanol metabolism depends
on the excess of respiratory capacity and the available
ethanol (4). Under oxygen starvation conditions, the
fermentative metabolic pathway always predominates.

Based on the reaction scheme (1), the following
macroscopic mass balances can be derived:

d(VX)

dt
= (k1r1 +k2r2 +k3r3)VX (5a)

d(VG)

dt
= − (r1 + r2)VX+Fin Gin (5b)

d(VE)

dt
= (k4r2− r3)VX (5c)

dV
dt

= Fin (5d)

where Fin is the inlet feed rate,V is the culture
medium volume andGin is the glucose concentration
in the feed.

2.2 Optimal operating conditions

For economic reasons, there are strong motivations
to maximize the amount of biomass produced with
minimum operating time. Therefore the optimization
problem consists in establishing the feeding strategy
that maximizes the biomass productivity. It is shown
(see, e.g. Valentinottiet al., 2004) that the optimal
solution corresponds to a feeding profileFin(t) which
fills exactly the bottleneck. Thus the optimal operating
point is situated at the boundary between the respiro-
fermentative and respirative operating regimes. In this
case the glucose concentration is maintained at a con-
stant valueGcrit such that the glucose consumption
raterG is equal to the maximal glucose oxidative rate
rOmax/k5. Only the glucose oxidation reaction takes
place and there is no ethanol production or consump-
tion. The total amount of ethanolVE is kept constant.

Therefore, in order to always operate the system
around the optimal operating point, the control strat-
egy must be able to maintain the productVE constant.



It requires an accurate measurement of both volume
and ethanol concentration. As it is difficult to take
into account all liquid additions (evaporation, sam-
pling, base addition, . . . ), E-control is more usual than
VE-control. Although the E-control is a suboptimal
strategy, it comes quite close to the optimal one as
the reference valueEre f for the ethanol concentration
approaches zero.

2.3 Simplified linear models

As the optimal operating point is situated at the bound-
ary between the respiro-fermentative and respirative
operating regimes, a simple tailor-made model is de-
rived for each regime whenG tends toGcrit . The
modeling procedure is directly inspired from the work
of Valentinotti et al. (2003). For both models, it is
assumed that the total amount of glucoseVG is at
quasi-steady state:

d(VG)

dt
= −(r1 + r2)VX+FinGin = 0 (6)

This assumption is justified since a small variation
in the substrate feed rateFin will result in an almost
instantaneous change in the amount of substrateVG
in the bioreactor.

Respiro-fermentative model(r2 6= 0; r3 = 0)
This model is valid whenE is regulated atEre f near
0. In this case,G is slightly larger thanGcrit and only
a small production of ethanol is needed to counteract
the dilution effect. This way, reaction (1a) is saturated
(r1 = µO/k5 if oxygen is not limiting) and the cell
growth rateµ can be assimilated to a constant para-
meterµ̄:

µ= k1r1 +k2r2 +k3r3 ≈ k1r1 = k1
µO

k5
, µ̄ (7)

Together with (7), Equation (5a) gives:

VX = V0X0 exp(µ̄(t − t0)) (8)

With r3 = 0, (5c) and (6) lead to the ethanol production
dynamics:

d(VE)

dt
= k4Gin (Fin −d) (9)

whered = µO
k5Gin

VX is considered as an input distur-
bance corresponding to the substrate flux needed for
biomass growth.

During a fed-batch culture, the volume increases with
time fromV0 toVf . Thus, considering a constant aver-
age volumēV = (V0 +Vf )/2, the ethanol dynamics in
(9) can be rewritten as:

dE
dt

=
k4Gin

V̄
(Fin −d) (10)

With Equation (8), the disturbanced corresponding to
the exponential substrate oxidation is given by:

d(t) = Kd exp(µ̄(t − t0)) (11)

whereKd = µOV0X0
k5Gin

.

Respirative model(r3 6= 0; r2 = 0)
This model is valid when the excess oxidative capacity
is small. Therefore, if the ethanol concentration is
sufficient (i.e.rE ≥ (rOmax− k5 rG)/k6), the glucose
flux rG is nearrOmax/k5 and (7) still holds. In this case,
the ethanol oxidative rate remains small and can be
written as follows:

r3 =
µO−k5r1

k6
(12)

Considering (5c) and (6) withr2 = 0 and the average
volumeV̄, the ethanol dynamics is given by:

dE
dt

=
k5

k6

Gin

V̄
(Fin −d) (13)

where the disturbanced is the same as in the respiro-
fermentative model.

Finally, for both operating regimes, disturbance and
ethanol dynamics can be expressed by the same dis-
crete transfer functions:

E(k) =
KE q−1

1−q−1 (Fin(k)−d(k))

=
B(q−1)

A(q−1)
(Fin(k)−d(k)) (14)

d(k) =
Kd

1− γ q−1 δ(k) =
C(q−1)

D(q−1)
δ(k) (15)

with γ = exp(µ̄Ts) andδ(k) the unit pulse.

This simplified model can be associated to the follow-
ing modeling uncertainties:

• KE variations according to the operating regime
(respiro-fermentative regime :KE = Tsk4Gin/V̄;
respirative regime :KE = Ts

k5
k6

Gin/V̄, whereTs is
the sampling time),

• neglected (‘high frequency’) glucose dynamics,
• γ variations. In fact,γ is the only kinetic para-

meter of the simplified model, which isa priori
unknown.

3. CONTROL STRATEGY

The controller used in this work is a RST controller
with Youla parametrization (see, e.g. Maciejowski,
1989). The corresponding block diagram is shown
in Figure 1. The Youla parametrization of the initial
controllerR 0S 0T 0 leads to the following stabilizing
polynomials:

T̄ = T 0−A0Q 2, R̄ = R 0−BQ 1, S̄ = S 0 +AQ 1

(16)

whereQ 1 andQ 2 are stable transfer functions.

The closed loop transfer function can be written as
follows:

y =
B(T 0−A0Q 2)

AR 0 +BS 0
w+

B(R 0−BQ 1)

AR 0 +BS 0
d (17)

Two remarks can be done:Q 2 modifies only the
tracking behaviour, and, if the model is exact, the
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Fig. 1. Closed-loop diagram of fed-batch yeast cul-
ture process controlled by a RST controller with
Youla parametrization (u = Fin, y = E andw =
Ere f ).

characteristic equationA0Ac is not modified by the
parametrization:

A0Ac = AR̄ +BS̄ = AR 0 +BS 0 (18)

Q 2 is set to zero since tracking is ensured by the
initial controller design. Disturbance rejection can be
achieved by tuningQ 1, for which a particular struc-
ture is chosen:

Q 1 = Q 11+DQ 12 (19)

where Q 11 and Q 12 are stable transfer functions:
Q 11 is designed to ensure an asymptotic rejection of
disturbanced, while Q 12 is designed to maximize the
robustness against modeling uncertainties.

3.1 Q 11 design

The Q 11 design follows the work of Valentinottiet
al. (2003) about the adaptive rejection of unstable
disturbances. Considering Equations (15) and (17), the
disturbance effect on the output is defined as:

ed =
B(R 0−BQ 1)

A0Ac

C
D

δ (20)

According to the internal model principle (Francis and
Wonham, 1976), the unstable poles ofed must be
present in theR̄ denominator in order to ensure the
disturbance rejection. Since the characteristic equation
is stable by construction, the disturbance effect has
only one unstable pole, the poleγ of the D polyno-
mial. Therefore,ed converges asymptotically to zero
if the polynomialD is a factor of theR̄ polynomial.
With the particular structure (19) ofQ 1 whereQ 12

is already convoluted withD, Q 11 can be designed
independently ofQ 12 by solving the following Dio-
phantine equation:

R 0−BQ 11 = MD (21)

whereM is an arbitrary polynomial inq−1.

3.2 Q 12 design

Q 12 is designed to satisfy two kinds of specifications:
frequency and temporal specifications (Rodriguez,
2003).

3.2.1. Frequency specifications With regard to the
simplified model, the uncertainties on the gainKE and
the neglected glucose dynamics can be represented
by a multiplicative direct uncertainty. Assuming the
system and controller structured as in Figure 1, theP
representation for this kind of uncertainty is:

P = −
B(S 0 +AQ 11)

A0Ac
−

BAD
A0Ac

Q 12 (22)

Considering the small gain theorem (Maciejowski,
1989), the robustification against unstructured uncer-
tainties is achieved by minimizing anH∞ norm:

min
Q 12∈RH∞

∥

∥P(q−1)W(q−1)
∥

∥

∞ (23)

whereW is a weighting transfer function andRH∞ is
the space of all proper and stable transfer functions.
The Youla parametrization allows linear dependency
betweenP and the Youla parameterQ 12 as shown
in Equation (22). So, the specifications defined by
Equation (23) are convex inQ 12 (see e.g. Boyd and
Barrat, 1991).

3.2.2. Temporal specifications A temporal specifi-
cation on the control signal response to a measurement
noise is considered. LetHub be the transfer function
between the noiseb and the control signalu:

Hub = −
A(S 0 +AQ 11)

A0Ac
−

A2D
A0Ac

Q 12 (24)

and denote bys(t) the response ofHub to a specific
inputb(t) like a white noise sequence. Temporal spec-
ifications consist of a template inside whichs(t) must
remain constrained. This template can be specified by
the minimal and maximal amplitudess ands. So, the
set of allQ 12 parameters that satisfy this constraint is:

Cenv= {Q 12|Φenv(Q 12) ≤ 0} (25)

with Φenv(Q 12) = max

(

max
t≥0

(s(t)−s(t),s(t)−s(t))

)

The transfer function (24) being linearly parametrized
by the Youla parameterQ 12, the temporal specifi-
cations are also convex inQ 12 (see e.g. Boyd and
Barrat, 1991).

In conclusion, the design ofQ 12 consists of aH∞
minimisation problem (23) under constraints imposed
by the temporal specifications (25):

min
Q 12∈RH∞
Φenv(Q 12)≤0

∥

∥P(q−1)W(q−1)
∥

∥

∞ (26)

This is a convex optimisation problem leading to
a Q 12 parameter varying in an infinite dimensional



space. To the authors’ knowledge, there is no solution
to this optimization problem, and a sub-optimal so-
lution can be obtained by considering a finite dimen-
tional sub-space generated by an orthonormal base
of stable transfer functions. This way, theH∞ norm
minimisation and the temporal constraints can be ap-
proximated by a minimisation under linear inequality
constraints (Rodriguez, 2003).

3.3 Q 11 adaptation

Equation (21) depends on the unstable poleγ of the
D polynomial. However, this pole isa priori unknown
since the critical growth rate ¯µ can vary from a yeast
strain to another or also during the culture. Therefore,
Q 11 has to be adapted on-line in order to minimize the
disturbance effect. With (21) and (19), the disturbance
effect (20) can be rewritten as:

ed =

(

M−BQ 12

M

) (

R 0−BQ 11

A0Ac

)

dB (27)

wheredB(k)= B(q−1)d(k)= A(q−1)y(k)−B(q−1)u(k)
is a filtered expression of disturbanced. Both terms
into brackets are parametrized independently byQ 12

andQ 11. If M is stable, it is enough to minimize on-
line the last term and it can be written as a linear
regression problem:

min
Q 11

‖ε1− ε2Q 11‖
2 (28)

where the signalsε1 andε2 are defined as:

ε1 =
R 0

A0Ac
dB and ε2 =

B
A0Ac

dB

An on-line adaptation ofQ 11 can be done using stan-
dard algorithms (Ljung, 1999).

4. EXPERIMENTAL RESULTS

4.1 Experimental setup

A new strain of genetically modifiedS. cerevisiaeis
considered in this study. A 20-l stirred tank biore-
actor (BioLafitte, France) is used for the cell cul-
ture. Temperature, dissolved oxygen, pH and air flow
rate are controlled by the bioreactor control box.
The fed-batch process is started with 5.8 l of fresh
medium without glucose and the inoculation gives
an initial biomass concentration of 0.7 g/l. The in-
oculum also introduces a small quantity of ethanol.
The feed medium contains 350 g/l of glucose and
its composition (ammonium sources, vitamins, trace
elements, . . . ) has not already been optimized for the
considered yeast strain.

The ethanol concentration is measured with an ethanol
probe (Frings, Bonn, Germany) immersed in the cul-
ture medium. A LABVIEW-based bioprocess man-
agement and control environment, BioOPT, is used to
supervise the process (Valentinottiet al., 2003).

4.2 Controller design

When E is regulated to the setpointEre f = 0.7 g/l,
the system operates in respiro-fermentative regime.
Thus, the only nonoperational parameter required to
compute the controller is the stoichiometric coefficient
k4. The value proposed by Sonnleitner and Käppeli
(1986) is chosen,k4 = 0.48 [g of E/g of G]. With a
sampling periodTs = 0.1 h, a feed glucose concen-
trationGin = 350 g/l and an average volumēV = 9 l,
the gain of the production/consumption process (14)
is KE = 1.87. The initial controller is designed by
pole placement withA0Ac = 1− 0.95 q−1. The re-
sulting proportional controller is given byR 0 = 1,
S 0 = 0.027 andT 0 = A0Ac(1)/B(1) = 0.027. The
minimal degree solution of the Diophantine equation
(21) corresponds toM = 1 andQ 11 is a scalar equal
to γ/KE. As γ = exp(µ̄Ts), an initial value ofQ 11 can
be computed from an initial estimation of the critical
growth rateµ̄.

KE varies according to the operating regime and
the neglected glucose dynamics can be modeled
by a direct multiplicative uncertainty (22). The fre-
quency domain of glucose dynamics being situated in
high frequencies, those frequencies are more heavily
weighted thanks to the following weighting function:
W(q−1) = (1−0.5 q−1)/0.5. Temporal specifications
Φenv(Q 12) correspond to a template for measurement
noise/control transfer (24). With a pseudo-random
noise of zero mean and 0.05 variance, these specifi-
cations set a limit for the measurement noise effect on
the control signal, restrictingu variations due to noise
within a±0.15 range. The optimization problem (26)
is solved by a quadratic minimization algorithm under
inequality constraints and leads to:

Q 12
(

q−1) =
−0.3281+0.1460q−1

1−1.1225q−1 +0.2408q−2

Figure 2 shows the Black diagram for three different
controllers. It is well known that ensuring a modulus
lower than 6 dB forσd and lower than 3 dB forσc

provides a good stability robustness. It is therefore
apparent that the introduction of the unstable poleγ
in R̄ deteriorates the robustness at high frequencies.
On the other hand, the full robustified controller has
good robustness for all frequencies, as well as better
gain and phase margins.

4.3 Results and discussion

An experimental test is performed with the controller
and the results are shown in Figure 3. After a short la-
tency phase during which a small feed rate is used, the
controller is started. Figure 3 shows that the control
algorithm is able to bringE to the setpointEre f = 0.7
g/l and to subsequently regulateE around this setpoint
throughout the first 18 h. During this period, the cell
growth is exponential and, after a short transient, the
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adaptation algorithm estimates very satisfactorily the
Q 11 parameter.

After 18h, a limitation phenomenon occurs because
the feed medium is not opimized for the new yeast
strain considered in this study. Therefore, the ethanol
concentration increases slightly while the adaptation
algorithm tries to decreaseQ 11, which is the image of
the decreasing growth rate ¯µ. The adaptation dynamics
being slower than the controller dynamics, a small
drift is observed when ¯µ is overestimated.

Around 22h, the cell growth becomes nearly linear
and the feed rateFin becomes nearly constant. When
the estimated ¯µ becomes satisfactory, around 25h, the
controller is able to maintainE nearEre f again. Thus,
this experiment shows that the controller ensures the
tracking of the optimal trajectory despite strong limi-
tation phenomena.

5. CONCLUSION

The optimal operating point (G = Gcrit ) corresponds
to the boundary between the respiro-fermentative and
respirative regime. Around this operating point, yeast

fed-batch cultures can be modeled by a simple lin-
ear model describing the main macroscopic processes:
exponential glucose uptake for cell growth and small
ethanol production/consumption according to the op-
erating regime. The first process is considered as a
disturbance to be rejected, and the second one models
the plant to be controlled. This modeling methodology
allows several uncertainties to be associated with the
simplified model, i.e. the gain variation of the ethanol
production/consumption process and the glucose dy-
namics which has been neglected.

A RST controller with Youla parametrization is used
to ensure the asymptotic rejection of unstable distur-
bances, a good robustness against uncertainties and a
noise attenuation on the control signal. Moreover, the
control algorithm includes a disturbance model adap-
tation since the growth rate isa priori unknown and
can evolve during the culture. This control strategy is
tested experimentally with a fed-batch culture of a new
genetically modified yeast strain. The results are quite
promising, and show that the controller is able to deal
with metabolic changes such as a substrate limitation
phenomenon.
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Rodriguez, P. (2003). Robustification de lois de com-
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