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Abstract: The particle filter for nonlinear state estimation of discrete time dynamic
stochastic systems is treated. The functional sampling density of the particle filter
strongly affecting estimate quality is studied. The density is given by weighted
mixture of the transition probability density functions. The weights are calculated
using distance of two reference variable probability density functions representing
prior and measurement information. The aim is to find a suitable distance that
does not suffer from problems with its numerical computation and that can be
computed for a large set of systems analytically. It seems that the Bhattacharyya
distance is feasible for evaluation of such a distance. Quality and computational
demands of the functional particle filter with primary weights computed using the
Bhattacharyya distance are illustrated in a numerical example.
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1. INTRODUCTION

Recursive state estimation of discrete-time nonlin-
ear stochastic dynamic systems from noisy mea-
surement data has been a subject of considerable
research interest for the last three decades.The
Bayesian approach can be used for general solu-
tion of the state estimation problem. The closed
form solution of the Bayesian recursive relations
(BRR) is available for a few special cases only so
some approximative solutions have to be applied.

Since nineties, Monte Carlo (MC) simulation-
based methods have been dominating in nonlinear
estimation due to their easy implementation in
very general settings and cheap and formidable
computational power. The particle filter (PF) be-

longs to the MC simulation-based methods which
provide a convenient approach to computing the
posterior probability density function (pdf) of the
state. The fundamental paper dealing with MC
solution of the BRR was published by Gordon et
al. (1993) where the first effective filtering method
in MC framework was proposed. Contribution of
the paper was introducing the resampling step
to the sequential importance sampling method to
eliminate a convergence problem.

Estimate quality of the PF is strongly affected
by sample size and sampling density (SD) which
represent key design parameters of the PF.

Effective sample size setting has been disregarded
for a long time although sample size represents a



key parameter of the PF design, Some advances in
effective sample size setting were done in Šimandl
and Straka (2002) where the Cramér Rao bound
was used as a gauge for quality evaluation of the
PF and in Fox (2001), Koller and Fratkina (1998),
Straka and Šimandl (2004) where some sample
size adaptation techniques have been proposed.

SD design can proceed from two approaches. The
first one uses the transition and the measurement
pdf’s directly (e.g. the prior SD, the optimal
SD) (Liu et al., 2001). The second approach uses
approximative filtering pdf computed by another
filtering method (e.g. the sigma point filter, the
extended Kalman filter or the Gaussian sum filter)
as the SD and results in so called hybrid particle
filters (van der Merwe and Wan, 2003).

This paper deals with the first approach to SD
design only. An important contribution to this ap-
proach was published by Pitt and Shephard (2001)
where the concept of prior rating of samples us-
ing primary weights was introduced. Šimandl and
Straka (2003) proposed the PF with the functional
sampling density (FSD) based on comparison of
the prior and the measurement information in the
form of reference variable pdf’s. To compare the
two pdf’s, the Kullback J-divergence was chosen.
The distance can be computed analytically for a
few special cases only and it may have problems
during its numerical computation.

Goal of the paper is to analyze the functional
sampling density, its aspects and to find a suitable
distance of the reference variable pdf’s that can
be computed analytically for large set of cases
and that does not suffer from problems during its
numerical computation in other cases.

The paper is organized as follows: State estima-
tion using the PF is introduced in Section 2. A
brief survey of SD design and the FSD design
is described in Section 3. Section 4 deals with
detailed discussion about the FSD together with
aspects of choice of reference variable pdf’s dis-
tance. Section 5 contains application of the Bhat-
tacharyya distance in the FSD design. Further, a
numerical illustration of the PF with the Bhat-
tacharyya distance in the FSD is provided in Sec-
tion 6 and finally, the main results are summarized
in Section 7.

2. STATE ESTIMATION BY THE PARTICLE
FILTER

Consider the discrete time nonlinear stochastic
system given by the transition equation (1) and
the measurement equation (2):

xk+1 = fk(xk,wk), k = 0, 1, 2, . . . (1)

zk = hk(xk) + vk, k = 0, 1, 2, . . . (2)

where the vectors xk ∈ R
n, zk ∈ R

m represent the
state of the system and the measurement at time
k, respectively, wk ∈ R

n and vk ∈ R
m are state

and measurement white noises, mutually indepen-
dent and independent on x0, with known pdf’s
p(wk) and p(vk) respectively, fk : R

n × R
n → R

n,
hk : R

n → R
m are known vector functions and the

pdf p(x0) of the initial state x0 is known.

The general solution of the state estimation prob-
lem is provided by the BRR which produce
the filtering pdf p(xk|zk) and the predictive pdf
p(xk+1|zk), where zk = [zT

0 , zT
1 , . . . , zT

k ]T.

The idea of the PF in nonlinear state estimation
is to approximate the filtering pdf p(xk|zk), k =
0, 1, 2 . . ., by the empirical filtering pdf rN (xk|zk)
which is given by N random samples of the state

{x(i)
k , i = 1, . . . , N} and corresponding weights

{w(i)
k , i = 1, . . . , N}. General algorithm of the

PF (Liu et al., 2001) can be summarized using
the following steps:

Initialization: The samples {x(i)
0 }, i=1,2,. . . ,N

are generated from the prior pdf p(x0|z−1).

Then the weights {w(i)
0 } are associated to the

samples {x(i)
0 },

w
(i)
0 ∝ p(z0|xi

0), i=1,2,. . . ,N, (3)

where
∑N

i=1w
(i)
0 = 1. The empirical pdf

rN (x0|z0) given as

rN (x0|z0) =

N
∑

i=1

w
(i)
0 δ(x0 − x

(i)
0 )

approximates the filtering pdf p(x0|z0). The
function δ(·) is the Dirac function defined as
δ(x) = 0 for x 6= 0 and

∫

δ(x)dx = 1. Let the
time step k be k = 1.

Resampling: Resampling serves for rejuvenat-

ing the samples {x(i)
k−1} according to the weights

{w(i)
k−1}.

Filtering: The samples {x(i)
k }, i=1,2,. . . ,N for

the next time instant k are generated from the

global sampling pdf π(xk|x(1:N)
k−1 , zk) where

π(xk|x(1:N)
k−1 , zk) =

N
∑

i=1

v(x
(i)
k−1, zk)π(xk|x(i)

k−1, zk).

(4)

To generate the samples x
(i)
k , i=1,2,. . . ,N,

firstly N indices ji, i=1,2,. . . ,N have to be
drawn from the multinomial distribution with
parameters given by the primary weights

{v(x(i)
k−1, zk), i=1, . . . , N}. Then each sample

x
(i)
k is generated from the local sampling pdf

π(xk|x(ji)
k−1, zk). The weights {w(i)

k , i=1, . . . , N}
associated to the samples {x(i)

k , i=1,2,. . . ,N}
are calculated using the following form



w
(i)
k ∝

p(zk|x(i)
k )p(x

(i)
k |x(ji)

k−1)

v(x
(i)
k−1, zk)π(x

(i)
k |x(ji)

k−1, zk)
w

(ji)
k−1. (5)

The empirical pdf rN (xk|zk) given by the sam-

ples {x(i)
k } and the weights {w(i)

k } as

rN (xk|zk) =

N
∑

i=1

w
(i)
k δ(xk − x

(i)
k )

approximates the filtering pdf p(xk|zk).

Let k ← k +1 and continue with Resampling.

3. FUNCTIONAL SAMPLING DENSITY

The global SD π(xk|x(1:N)
k−1 , zk) is one of two cru-

cial design parameters directly affecting quality of
the PF estimate.

One of the first particle filters proposed in Gordon
et al. (1993) as the bootstrap filter (BF) uses the
global SD in the following form:

π(xk|x(1:N)
k−1 , zk) =

N
∑

i=1

1

N
p(xk|x(i)

k−1). (6)

It can be seen that the pdf (6) does not take into
account knowledge of the measurement zk. The
local SD has the form of mixture of the transi-
tion pdf’s with equal primary weights v(x

(ji)
k−1, zk),

v(x
(ji)
k−1, zk) = 1

N
. Thus the global SD (6) can be

called the prior sampling density.

In some cases it is possible to find an explicit form

of the pdf p(xk|x(ji)
k−1, zk) and then the global SD

can be proposed in the form

π(xk|x(1:N)
k−1 , zk) =

N
∑

i=1

1

N
p(xk|x(i)

k−1, zk). (7)

The pdf (7) does not increase variance of weights
E{w2

k} which is closely related to estimate quality
and thus the pdf (7) can be called the optimal
sampling density. Drawback of the optimal SD lies
in a relatively small set of systems for which such
a pdf can be found explicitly (e.g. systems with
gaussian transition pdf, linear measurement equa-
tion with additive gaussian measurement noise).

Pitt and Shephard (2001) proposed the auxiliary
particle filter (APF) and introduced concept of

primary weights v(x
(i)
k−1, zk) into SD which has the

following form

π(xk|x(1:N)
k−1 , zk)=

N
∑

i=1

v(x
(i)
k−1, zk)p(xk|x(i)

k−1). (8)

Each primary weight v(x
(i)
k−1, zk) evaluates cor-

responding sample x
(i)
k−1 according to the cur-

rent measurement zk. They proposed the primary
weight in the form

ṽ(x
(i)
k−1, zk) = pzk|xk

(zk|µ(i)
k ) (9)

where the variable µ
(i)
k represents mean, mode

or another likely value of the random variable

xk given by the transition pdf p(xk|x(i)
k−1). Note

that the primary weight v(x
(i)
k−1, zk) is a normal-

ized version of ṽ(x
(i)
k−1, zk) so that v(x

(i)
k−1, zk) =

ṽ(x
(i)
k−1, zk)/[

∑N
j=1 ṽ(x

(j)
k−1, zk)].

It was shown in Pitt and Shephard (2001) that
the variance of weights E{w2

k} of the APF with
the primary weights (9) is usually lower than that
of the PF with the prior SD.

The form (9) of primary weight can be seen as
comparison of prior and measurement informa-
tion. While the measurement information is given
by the measurement pdf p(zk|xk), the prior infor-

mation is given by the point estimate µ
(i)
k only. To

compare full information given by the measure-
ment and the transition pdf’s, the PF with the
FSD has been introduced in Šimandl and Straka
(2003).

The FSD has the form (8). Evaluation of the

primary weight v(x
(i)
k−1|zk) gets out of comparison

of the measurement information given by p(zk|xk)

and the prior information given by p(xk|x(i)
k−1).

Thus the primary weight takes into account com-
plete available information.

To compare the pdf’s it is necessary to introduce
a reference variable yk defined as

yk = hk(xk), (10)

The comparison procedure can be achieved through

the pdf p(yk|zk) and the pdf p(yk|x(i)
k−1). The pdf

p(yk|zk) can be obtained from the measurement
equation (2) and has the form p(yk|zk) = pvk

(zk−
yk). The pdf p(yk|x(i)

k−1) is a pdf of the ran-
dom variable yk obtained by the transformation
hk : R

n → R
m of the random variable xk given

by the pdf p(xk|x(i)
k−1). The pdf p(yk|x(i)

k−1) itself
can be found using the standard rule of random
variable transformation or it is possible to use
a completely different approach, e.g. unscented
transformation (Julier et al., 2000).

Different measures can be applied for comparison
of the pdf’s. The Kullback J-divergence (KJD)
(Kullback and Leibler, 1951) defined as

J(p(yk|zk)‖p(yk|x(i)
k−1))

△
=

∫

[p(yk|zk)−p(yk|x(i)
k−1)]

[log p(yk|zk) − log p(yk|x(i)
k−1)]dyk, (11)

which can be seen as a symmetrized version of the
Kullback-Leibler distance, can be applied here as
a standard tool.

The primary weight v(zk|x(i)
k−1) should be high for

the samples x
(i)
k−1 with the pdf p(yk|x(i)

k−1) close
to the pdf p(yk|zk), i.e. with low value of the
considered measure. In this case a simple term



e−J(·||·) may be used. So the primary weights may
have the form

ṽ(x
(i)
k−1, zk) = e−J(p(yk|zk)‖p(yk|x

(i)

k−1
)). (12)

Detailed discussion concerning choice of distance
for the FSD is subject of the next section.

4. SOME ASPECTS OF FUNCTIONAL
SAMPLING DENSITY

Aim of this section is to analyze impact of
choice of the reference variable pdf’s distance
on the FSD. Consider both the pdf’s of the

reference variable p(yk|zk) and p(yk|x(i)
k−1) are

known. The next step of the FSD design consists
of their comparison using a distance. Šimandl
and Straka (2003) proposed the KJD measure

J(p(yk|zk)‖p(yk|x(i)
k−1)) for such comparison and

to evaluate the primary weights using (12). Eval-
uation of the KJD measure has to be calculated
numerically except a few special cases. (e.g. both

pdf’s p(yk|zk) and p(yk|x(i)
k−1) are Gaussian).

Even for both pdf’s given by Gaussian mixtures
it is necessary to evaluate the KJD measure nu-
merically. Because numerical integration of the
integral in (11) is time consuming especially for
high dimensions of the reference variable yk, it
would be suitable to find a distance that can be
computed analytically for a larger set of systems.

Also numerical computation of such distance
has to be object of attention. To ease notation

consider px(i)(yk) = p(yk|x(i)
k ) and pz(yk) =

p(yk|zk). Consider for example distance called
Inaccuracy (Kerridge, 1961) defined as

I(px(i)(yk)‖pz(yk)
△
=

∫

px(i)(yk) log
1

pz(yk)
dyk

= −
∫

px(i)(yk) log pz(yk)dyk. (13)

The integral (13) can be computed for px(i)(yk) =
∑L

i=1 αiN{yk;mk,i,Sk,i} and for Gaussian pz(yk),
pz(yk) = N{yk;µk,Pk}. To evaluate the integral
(13) numerically it is necessary to resolve problem
of limited numerical accuracy of computational
environment.

Application of some correction step for resolving
limited numerical accuracy together with normal-
ization of the primary weights may result in quite
different values of the primary weights given by
numerically evaluated Inaccuracy in comparison
to the primary weights given by analytically eval-
uated Inaccuracy.

To illustrate incorrect primary weights evaluation
given by numerical computation of the integral
(13) caused by limited accuracy of computational
environment, consider for example
px(i)(yk) = 0.5N{yk;−3, 0.01}+0.5N{yk; 3, 0.01}

and pz(yk) = N{yk;µ, 0.01}. Figure 1 contains
the values of integral (13) computed both ana-
lytically and numerically for different values of µ.
It can be seen that shape of the curves are quite
different and thus the numerical solution of (13)
can not be used here.
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Fig. 1. Values of Inaccuracy for its analytical com-
putation (solid) and numerical computation
(dashed)

Moreover, it is important to note that application
of Inaccuracy is inappropriate for the considered
pdf’s because it does not respect multimodality
of the pdf’s (see solid curve in Figure 1). Thus a
deeper analysis of the distance for given reference
variable pdf’s is necessary.

5. USING BHATTACHARYYA DISTANCE

This section contains proposal of a reference vari-
able pdf’s distance for the FSD that can be com-
puted for a large set of systems analytically and
that is also suitable for numerical computation
in other cases. A very simple relation measuring
distance between two pdf’s is defined as follows

εBayes =

∫

min(px(i)(yk), pz(yk))dyk, (14)

where the distance between two pdf’s px(i)(yk)
and pz(yk) is defined as D(px(i)(yk)‖p(yk|zk)) =
1 − εBayes. The relation (14) is frequently used
as the Bayes error (BE). The value of the BE is
close to one for similar pdf’s and close to zero
for dissimilar pdf’s and thus it can be used for
primary weights evaluation directly. Numerical
computation of the integral in (14) does not
require any modification to avoid problems caused
by limited numerical accuracy of computational
environment. Unfortunately, the integral in (14)
can not be evaluated analytically even for two
Gaussian pdf’s. Nevertheless due to the inequality

min[a, b] ≤ asb1−s, 0 ≤ s ≤ 1

with s = 0.5 it is possible to propose an upper
bound for (14) in the form



εBayes ≤
∫

√

px(i)(yk) pz(yk)dyk. (15)

Further consider both pdf’s px(i)(yk) and pz(yk)
to be mixtures of some arbitrary pdf’s

px(i)(yk) =
A

∑

i=l

αlpl,x(i)(yk) (16)

and

pz(yk) =

B
∑

j=1

βjpj,z(yk) (17)

It holds that

εBayes≤
∫

√

√

√

√(

A
∑

l=1

αlpl,x(i)(yk))(

B
∑

j=1

βjpj,z(yk))dyk

=

∫

√

√

√

√

A
∑

l=1

B
∑

j=1

αlβjpl,x(i)(yk)pj,z(yk)dyk.

Applying the inequality
√

a + b ≤ √
a +

√
b as

proposed in Mak (1995) it holds that

εBayes≤
A

∑

l=1

B
∑

j=1

√

αlβj

∫

√

pl,x(i)(yk)pj,z(yk)dyk.

(18)
Thus if it is possible to evaluate the inte-
gral in (18) analytically, then it is possible
to evaluate an upper bound for the BE. For

pl,x(i)(yk) = N{yk;m
(i)
k,l,S

(i)
k,l} and pj,z(yk) =

N{yk;µk,j ,Pk,j} the value of the integral in (18)
is

∫

√

N{yk;m
(i)
k,l,S

(i)
k,l}N{yk;µk,j ,Pk,j}dyk =

= e−DBhat(N{yk;m
(i)

k,l
,S

(i)

k,l
}||N{yk;µk,j ,Pk,j})), (19)

where DBhat(p1(x)||p2(x)) is the Bhattacharyya
distance between two densities p1(x) and p2(x)
defined as (Basseville, 1989)

DBhat(p1(x)||p2(x))
△
=−log

∫

√

p1(x)p2(x)dx. (20)

The distance for the two Gaussian pdf’s consid-
ered in (19) has the following form

DBhat(N{yk;m
(i)
k,l,S

(i)
k,l}||N{yk;µk,j ,Pk,j}) =

=
1

8
(m

(i)
k,l − µk,j)

TR−1(m
(i)
k,l − µk,j)+

+
1

2
log

|R|
√

|S(i)
k,l||Pk,j |

, (21)

where R =
S

(i)

k,l
+Pk,j

2 . Thus the upper bound
for the BE can be evaluated analytically even
for pdf’s given by a mixture of Gaussians. This
is important because it greatly extends set of
systems for which the primary weights for the FSD
can be computed analytically and thus it allows to
accelerate computation of the FSD. Further, the
distance respects multimodality of the densities
which makes it fitting for the FSD in case of any
reference variable pdf being multimodal.

6. NUMERICAL EXAMPLES

To show different performance of the BF, the APF
and the FPF, the system with multi-modal pdf of
state noise is considered. The aim is to compare
quality of SD of particular PF with exact filtering
pdf produced by the Gaussian sum filter (GSF).
To calculate exact filtering pdf using the GSF, a
linear non-gaussian system has been chosen in the
following form

xk = 0.9 xk−1 + wk, (22)

zk = xk + vk, (23)

with p(vk)=N (vk; 0, 0.01), p(x0)=N (vk; 0, 0.001),
p(wk) = 0.1 N (wk;−1, 0.001)+0.9 N (wk; 1, 0.001).
The system was simulated for k = 1, 2, . . . 8. Four
particle filters were chosen for quality comparison:
the BF, the APF with µk chosen as mean, labeled
as the APFM, the APF with µk chosen as a
sample, labeled as the APFS and the FPF with
primary weights evaluated using the upper bound
(19). The sample size N = 100 was common for
all the particle filters.

The exact filtering pdf p(xk|zk), in the form

p(xk|zk) =
∑M

j=1 γjpj(xk|zk) was calculated us-
ing the GSF. The comparison was accomplished
using the Bhattacharyya distance between the SD

of particular PF π(xk|x(1:N)
k−1 , zk) and the exact

filtering pdf p(xk|zk) as

DBhat(p(xk|zk)||π(xk|x(1:N)
k−1 , zk)) = − log(

M
∑

j=1

N
∑

i=1
√

γjv(x
(i)
k , zk)e−DBhat(pj(xk|z

k)||p(xk|x
(i)

k−1
))

Exact value of the Bhattacharyya distance was
approximated using the MC method with S =
10000 realizations {zk(j)}8

k=1, j = 1, 2, . . . S and
thus a criterion Jk was considered in the following
form:

Jk=

S
∑

s=1

DBhat(p(xk|zk(s))||π(xk|x(1:N)
k−1 , zk(s)))

S
,

where zk(s) represents measurement for the sth

realization.

Figure 2 contains comparison of time evolution
of Jk for the BF, the APFM, the APFS and the
FPF. Due to multimodality of the state noise
wk it can be seen that estimate quality of the
APFM is worse than that of the BF which does
not employ primary weights. The FPF provides
highest estimate quality among all the particle
filters.

Comparison of computational demands of a time
step between the FPF with the Bhattacharyya
distance (FPFB) and the FPF with numerically
calculated J-divergence (FPFJ) can be seen in
Table 1.
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Fig. 2. Time evolution of Jk for the BF (dash-
dot), the APFM (solid), the APFS (dotted)
and the FPF (dashed)

Table 1. Comp. demands of FPFB and FPFJ

PF algorithm time of a step [s]
FPFB 0.2
FPFJ 34.9

Note that N = 100 samples and one-dimensional
reference variable were considered for the compar-
ison and that the difference would be even higher
for n-dimensional reference variable. Also note
that the FPFB approximately as computationally
demanding as the APF.

7. CONCLUSION

The paper dealt with functional sampling density
design for the PF. Distance measures between
pdf’s of the reference variable were analyzed. The
measure based on the Bhattacharyya distance for
comparison of the reference variable pdf’s was
proposed. It is more suitable for numerical com-
putation than the Kullback J-divergence proposed
earlier and also it can be computed analytically
even for reference variable given by mixture of
densities. Moreover the proposed measure can
respect multimodality of the reference variable
pdf’s. Estimate quality of the FPF with proposed
measure was illustrated in a numerical example.
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