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1. INTRODUCTION

The general solution of recursive state estimation
problem, based on the Bayesian approach, is given
by the functional relations for probability density
functions (pdf’s) of the state conditioned by the
measurements which provide a full description of
the hidden state.

The closed-form solution of the Bayesian Re-
cursive Relation (BRR) is available only for a
few special cases e.g. for linear Gaussian system
(Anderson and Moore, 1979). In other cases it
is necessary to apply some approximative meth-
ods. These methods are divided with respect to
the validity of the resulting estimates into two
groups (Sorenson, 1974). The first group of meth-
ods provides results with validity within some
neighborhood of a point estimate only and thus
they are called local methods. The second group
of methods provides results valid in almost whole
state space and so they are called global methods.

The local methods approximate the pdf’s repre-
senting state estimate with Gaussian pdf’s. The
main disadvantage of these methods is local va-

lidity of the state estimate which can causes the
divergence of the local filter estimates. The reason
for local methods popularity is simplicity of BRR
solution. The local filters can be based on approx-
imation of the nonlinear functions in the state
and measurement equation so that the analytical
solution of the BRR is possible using techniques
based on the Kalman Filter approach. The useful
approximations are based on the Taylor expan-
sion or Stirling’s interpolation which leads e.g.
to the Extended Kalman Filter (EKF) or Second
Order Filter (Anderson and Moore, 1979) or to
the Divide Difference Filter (DDF) (Nørgaard et

al., 2000), respectively. Instead of the substitution
of nonlinear functions the local filters can be also
based on the approximation of the pdf of the
state estimate by a set of deterministically cho-
sen weighted points so called σ-points. The Un-
scented Kalman Filter (UKF) (Julier et al., 2000)
or Gauss-Hermite Filter (Ito and Xiong, 2000)
exemplify this local approach.

Although the DDF and the UKF rise up from
quite different bases, these methods have a few
common features. Thus relatively high interest has



been devoted to compare these methods (Lefebvre
et al., 2001; Nørgaard et al., 2000). Unfortunately,
comparison of algorithms of these methods is quite
difficult due to the fact that the DDF can be
understood as square root algorithm, whereas the
UKF has “classical non-square root” structure.

Therefore the first aim of this paper is to derive
the square root version of the UKF.

The global estimation methods generate the con-
ditional pdf of the state estimate. Comparing to
local methods they are more sophisticated and
produce the better state estimate, but they have
higher computational demands. There are three
main approaches to the global filtering method
design: analytical approach based on system ap-
proximation and Gaussian sum approximation of
pdf’s (Sorenson and Alspach, 1971; Šimandl and
Královec, 2000), numerical approach using numer-
ical solution of the integrals in the BRR, (Bucy
and Senne, 1971; Šimandl et al., 2002) and sim-
ulation approach taking advantage of the BRR
solution performed using Monte Carlo integration
(Van Der Merwe and Wan, 2003; Šimandl and
Straka, 2003).

Some global methods are based on a multiple
application of local methods, e.g. Gaussian Sum
Filter (GSF), consists of a bank of EKF’s, or
Unscented Particle Filter and Gaussian Mixture
Sigma Point Particle Filter (GMSPPF), where
samples are moving by means of the UKF’s to
reduce a significant problem of basic algorithm of
the Particle Filter (PF) called “sample depletion”
(Van Der Merwe and Wan, 2003).

The idea of multiple application of local filters in
global filter design is the motivation for the second
aim of this paper, to utilize the Square Root
UKF, derived in this paper, in the framework of
Gaussian sum approach for design of the global
Sigma Point Gaussian Sum Filter.

The paper is organized as follows. Section 2 deals
with the estimation problem statement, Bayesian
state estimation and brief description of the UKF.
Subsequently the description and application of
the Householder triangularization in the Square
Root UKF design is given in Section 3. Section 4
is focused on utilization of the Square Root UKF
in the GSF framework. Afterwards, in Section 5 a
numerical example is given.

2. PROBLEM STATEMENT

Consider the discrete-time nonlinear non-Gaussian
stochastic system

xk+1 = fk(xk) +wk, k = 0, 1, 2, ... (1)

zk = hk(xk) + vk, k = 0, 1, 2, ... (2)

where the vectors xk ∈ Rnx and zk ∈ Rnz

represent the unknown state of the system and
the measurement at time instant k, respectively,
and wk ∈ Rnx and vk ∈ Rnz are state and
measurement white noises. Both noises are mu-
tually independent and independent on the initial
state x0. The vector functions fk : Rnx → Rnx ,
hk : Rnx → Rnz are known. Also the initial
condition pdf px0

(x0) is known as well as the pdf’s
of the noises pwk

(wk), pvk
(vk).

The system can be alternatively written as a
set of conditional pdf’s called transient pdf’s
pxk+1|xk

(xk+1|xk) = pwk
(xk+1−fk(xk)) and mea-

surement pdf pzk|xk
(zk|xk) = pvk

(zk − hk(xk)),
∀k. For the sake of simplicity all pdf’s will be
given with their argument, i.e. p(xk+1|xk) =
pxk+1|xk

(xk+1|xk).

The aim of the filtering is to find the state es-
timate in the form of the posterior filtering pdf
p(xk|zk). This pdf is given by the BRR, expressed
as

p(xk|z
k) =

p(xk|z
k−1)p(zk|xk)

∫

p(xk|zk−1)p(zk|xk)dxk
(3)

where p(xk+1|zk) =
∫

p(xk|zk) p(xk+1|xk)dxk is
a one-step prediction pdf, zk = [z0, . . . , zk] and
p(x0|z

−1) = p(x0).

The local filters the UKF and the DDF have
been developed to overcome the well-known dis-
advantages of the EKF, e.g. as inaccuracy, re-
quired derivation of the state and the measure-
ment functions fk(·) and hk(·) at preservation of
computational demands. However, approximation
of all pdf descriptions by the Gaussian pdf’s is
still assumed. It is also important to mention that
due to the common features the local filters UKF,
DDF and their variants are often called together
as Sigma Point Kalman Filters (SPKF’s) (Van
Der Merwe and Wan, 2003).

The basic UKF algorithm for system with additive
Gaussian noises wk ∼ N{wk : 0,Qk} and vk ∼
N{vk : 0,Rk} consists of the following steps:

Step 1: Set the time instant k = 0 and define
a prior Gaussian initial condition p(xk|z

k−1) =
N{xk : x̂

′

k,P
′

k}, where x̂
′

k = E[xk|z
k−1] and

P
′

k = cov[xk|zk−1].
Step 2: Determine the set of predictive σ-points
Xi,k|k−1 and their weightsWi (weights are com-
puted only at k = 0) at time instant k according
to

X0,k|k−1 = x̂
′

k,W0 =
κ

nx + κ
, (4)

Xi,k|k−1 = x̂
′

k + (
√

(nx + κ)P
′

k)i, (5)

Xj,k|k−1 = x̂
′

k − (
√

(nx + κ)P
′

k)j−nx
, (6)

where i = 1, . . . , nx, j = nx + 1, . . . , 2nx and
Wi =Wj =

1
2(nx+κ) ,∀i, j. The parameter κ de-



termines spreading of σ-points around the mean
and thereby it affects accuracy of the estimation
and the term (

√

(nx + κ)Pk)i represents the i-

th column of the matrix
√

(nx + κ)Pk.
Step 3: Update the state estimate, i.e. compute

the Gaussian approximation of the posterior pdf
p(xk|zk) ≈ N{xk : x̂k,Pk}, according to the
last measurement zk:

Zi,k|k−1 = hk(Xi,k|k−1),∀i, (7)

ẑ
′

k =

2nx
∑

i=0

WiZi,k|k−1, (8)

P
′

z,k =

2nx
∑

i=0

Wi(Zi,k|k−1 − ẑ
′

k)

× (Zi,k|k−1 − ẑ
′

k)
T +Rk, (9)

P
′

xz,k =

2nx
∑

i=0

Wi(Xi,k|k−1 − x̂
′

k)

× (Zi,k|k−1 − ẑ
′

k)
T , (10)

x̂k = x̂
′

k +P
′

xz,kP
′−1
z,k (zk − ẑ

′

k), (11)

Pk = P
′

k −P
′

xz,kP
′−1
z,k P

′T
xz,k. (12)

Step 4: Compute the filtering σ-points Xi,k|k in
accordance with (4)-(6), where the predictive
moments x̂

′

k, P
′

k are substituted by the filtering
ones x̂k, Pk.

Step 5: Calculate the set of predictive σ-points
Xi,k+1|k in accord with the system equation

Xi,k+1|k = fk(Xi,k|k),∀i. (13)

The predictive pdf p(xk+1|zk) is approximated
by the Gaussian pdf N{xk+1 : x̂

′

k+1,P
′

k+1},

x̂
′

k+1 =

2nx
∑

i=0

WiXi,k+1|k, (14)

P
′

k+1 =

2nx
∑

i=0

Wi(Xi,k+1|k − x̂
′

k+1)

× (Xi,k+1|k − x̂′k+1)
T +Qk. (15)

Let k ← k + 1 and go to the Step 2.

Note that the square root of matrix
√

(nx + κ)Pk

can be found with assistance of e.g. Cholesky
decomposition (Julier et al., 2000). The recom-
mended settings of the scaling parameter κ is
κ = nx − 3 for Gaussian distribution which was
proved in detail in (Julier et al., 2000). This ba-
sic algorithm suffers from significant disadvantage
particulary in case if nx > 3. Then parameter
κ and weight W0 can be negative which may
cause non-positive semi-definite posterior covari-
ance matrix. In this case a few substitutive ways
ensuring positive definiteness of posterior covari-
ance matrix have been proposed e.g. scaled UKF
(Van Der Merwe and Wan, 2001), reduced σ-
points UKF (Julier & Uhlmann, 2002), Gauss-
Hermite Filter (Ito and Xiong, 2000). All these
approaches differ only in the way of computing of

σ-points, whereas the equations (7)-(15) remain
without any change.

Computation of a set of σ-points is the most
computationally demanding operation due to the
Cholesky decomposition performed twice at each
time instant. Although the σ-point set calculation
is based on the square root of the state estimate
covariance matrix, the “full” covariance matrixes
(12), (15) are computed.

Therefore the improvement of the basic algorithm
of the UKF should be proposed, where square root
of the covariance would be immediately available.

As it was mentioned above, the local approaches
are often used to make the global method prop-
erties better, e.g. GMSPPF (Van Der Merwe
and Wan, 2003) which improve estimation per-
formance of the PF. Unfortunately, this enhance-
ment induces growth of computational demands.

For that reason the additional aim is to propose
the alternative global estimation method which
reduces the computational demands and main-
tains the estimation quality of the GMSPPF.

3. SQUARE ROOT UNSCENTED FILTER

This section deals with the square root modifi-
cation of the UKF (SRUKF). This improvement
should facilitate direct comparison of the SRUKF
and the DDF algorithms and it should reduce the
computational demands of the UKF. Moreover,
it should ensure positive semi-definiteness of the
state estimate covariance matrixes and thereby it
should improve numerical stability of the UKF.

As a basic tool to the SRUKF derivation the
Householder triangularization is used (Nørgaard
et al., 2000). The Householder triangularization
can be used for transformation of known rect-
angular matrix M ∈ Rn×m to square matrix
N ∈ Rn×n so that the equality NNT = MMT

is accomplished.

It should be mentioned that all variables used
in this section are defined in accord with the
basic UKF algorithm (4)-(15) in previous section.
The matrixes SQ,k ∈ Rnx×nx , SR,k ∈ Rnz×nz

represent the state and measurement square root
covariance matrixes at time instant k which ac-
complish Qk = SQ,kS

T
Q,k, Rk = SR,kS

T
R,k. The

SRUKF algorithm for the system (1), (2) with
Gaussian noises is given by the following steps.

Step 1: Set the time instant k = 0 and define
a prior Gaussian initial condition p(xk|z

k−1)
= N{xk : x̂

′

k,P
′

k}. Compute the square root of

the covariance S
′

k = chol(P
′

k), where the func-
tion chol(·) means the Cholesky decomposition.

Step 2: Determine the set of predictive σ-points
Xi,k|k−1 and their weightsWi (weights are com-



puted only at k = 0) at time instant k according
to

X0,k|k−1 = x̂
′

k,W0 =
κ

nx + κ
, (16)

Xi,k|k−1 = x̂
′

k + (
√

(nx + κ)S
′

k)i, (17)

Xj,k|k−1 = x̂
′

k − (
√

(nx + κ)S
′

k)j−nx
, (18)

where i = 1, . . . , nx, j = nx + 1, . . . , 2nx and
Wi =Wj =

1
2(nx+κ) ,∀i, j.

Step 3: Update the state estimate, i.e. compute
the Gaussian approximation of the posterior pdf
p(xk|zk) ≈ N{xk : x̂k,SkS

T
k }, according to the

last measurement zk:

Zi,k|k−1 = hk(Xi,k|k−1),∀i, (19)

ẑ
′

k =

2nx
∑

i=0

WiZi,k|k−1, (20)

M
′

z,k = [
√

W0(Z0,k|k−1 − ẑ
′

k),

. . . ,
√

W2nx
(Z2nx,k|k−1 − ẑ

′

k)], (21)

S
′

z,k = [M
′

z,k,SR,k], (22)

M
′

x,k = [
√

W0(X0,k|k−1 − x̂
′

k),

. . . ,
√

W2nx
(X2nx,k|k−1 − x̂

′

k)], (23)

P
′

xz,k = M
′

x,kM
′T
z,k, (24)

Kk = P
′

xz,k(S
′

z,kS
′T
z,k)

−1, (25)

x̂k = x̂
′

k +Kk(zk − ẑ
′

k), (26)

Sk = ht([M
′

x,k −KkM
′

z,k,KkSR,k]),

(27)

where function ht(M) is the Householder trian-
gularization applied to rectangular matrix M.

Step 4: Compute the filtering σ-points Xi,k|k in
accordance with (16)-(18), where the predictive
characteristics x̂

′

k, S
′

k are substituted by the
filtering ones x̂k, Sk.

Step 5: Calculate the set of predictive σ-points
Xi,k+1|k in accord with the system equation

Xi,k+1|k = fk(Xi,k|k),∀i. (28)

The predictive pdf p(xk+1|z
k) is approximated

by the Gaussian pdfN{xk+1 : x̂
′

k+1,S
′

k+1S
′T
k+1},

where

x̂
′

k+1 =

2nx
∑

i=0

WiXi,k+1|k, (29)

S
′

k+1 = ht([
√

W0(X0,k+1|k − x̂
′

k+1), . . . ,
√

W2nx
(X2nx,k+1|k − x̂

′

k+1),SQ,k+1]).
(30)

Let k ← k + 1 and go to the Step 2.

Note that the formulas for computation of all
means in the UKF and the SRUKF are the same.
The differences between these algorithms arise
in calculation of covariance matrixes. Some of
these terms can be transformed to the square
root structure easily and directly, namelyP

′

z,k (9),

P
′

xz,k (10) and P
′

k+1 (15). But the transformation

of the covariance Pk (12) to the square root
form Sk (27) is slightly complicated due to the
minus sign in (12). This problem can be solved by
extending the equation (12) to the form

Pk = S
′

kS
′T
k +KkS

′

z,kS
′T
z,kK

T
k − 2KkS

′

z,kS
′T
z,kK

T
k .

Then replace the terms KkS
′

z,kS
′T
z,kK

T
k by means

of following substitutions

KkS
′

z,kS
′T
z,kK

T
k = P

′

xz,kK
T
k = M

′

x,kM
′T
z,kK

T
k ,

= KkP
′T
xz,k = KkM

′

z,kM
′T
x,k,

= Kk(M
′

z,kM
′T
z,k + S

′

R,kS
′T
R,k)K

T
k .

Afterwards, only a few basic matrix operations
have to be done to obtain the equation (27).

The structure of the SRUKF algorithm is quite
similar to the DDF one which allows superfi-
cial comparison between these algorithms. The
DDF can be based on the Stirling’s interpola-
tion formula first (DD1) or second order (DD2)
(Nørgaard et al., 2000). It can be easily shown
that the formulas for the predictive mean in the
SRUKF and in the DD2 are the same. On the
other hand the structure of the SRUKF formu-
las for the predictive and the filtering covariance
matrixes are formally similar to the formulas of
the DD1 ones, but the columns of the matrixes
are different. It is also important that the square
root modification of the UKF has been already
done in (Van Der Merwe and Wan, 2001), but
this variation is based on different techniques as
QR decomposition, Cholesky factor updating or
efficient least squares which do not facilitate the
straight comparison of the SRUKF with the DDF.
Note that all refined versions of basic UKF, which
differ only in the σ-point determination, e.g. the
Gauss-Hermite Filter (Ito and Xiong, 2000), can
be easily modified to the square root structure as
well.

4. SIGMA POINT GAUSSIAN SUM FILTER

The main goal of the section is to design the
new global Sigma Point Gaussian Sum Filter
(SPGSF) as an alternative to the computational
demanding GMSPPF which uses the Monte Carlo
simulation and the bank of the standard UKF
(Van Der Merwe and Wan, 2003).

The main idea of the Gaussian sum approach
(Sorenson and Alspach, 1971; Šimandl and Králo-
vec, 2000) is based on the approximation of an
arbitrary pdf by a Gaussian mixture. To apply
this idea for the system (1), (2) it is necessary to
assume the prior pdf, the state and the measure
noise pdf in the form of Gaussian mixtures. To
obtain a close-loop solution of the BRR, the multi-
point linearization of nonlinear functions fk(·),
hk(·) has to be performed. Then, the GSF can be



understood as a mixture of the EKF’s generating
filtering pdf’s in the form of Gaussian mixtures.

However, the EKF as the corner stone of the GSF
suffers with some above mentioned disadvantages
which have been overcome by some newer ap-
proaches as the UKF, DDF. Therefore, with usage
of bank of SPKF’s instead of bank of the EKF’s,
it should be possible to reach better estimation
results than it would be reached by the standard
GSF. It seems to be reasonable to choose the
SRUKF as the representant of the SPKF’s due
to small computations demands and numerical
stability. Substituting the SRUKF to the GSF
structure, the global SPGSF can be obtained.

The SPGSF algorithm can be briefly summarized
in the following steps.

Step 1: Set the time instant k = 0 and define a
prior initial condition in the form of mixture of
N Gaussians

p(xk|z
k−1) =

N
∑

j=1

w
(j)
k−1N (xk : x̂

′(j)
k ,P

′(j)
k ),

(31)

where w
(j)
k−1 > 0 is weight of the j-th Gaussian

and
∑N

j=1 w
(j)
k−1 = 1.

Step 2: Determine the sets of predictive σ-points

X
(j)
i,k|k−1 and weightsW

(j)
i for all Gaussians, i.e.

∀j, according to (16) - (18).
Step 3: The filtering pdf is determined in the

form

p(xk|z
k) =

Nf
∑

j=1

w
(j)
k N (xk : x̂

(j)
k ,P

(j)
k ), (32)

with number of Gaussians Nf = N × Nv,
where Nv denotes the number of Gaussians in
measurement noise description. The j-th pdf

N (xk : x̂
(j)
k ,P

(j)
k ) is derived with respect to

(19) - (27), ∀j, and relevant filtering weight
according to

w
(j)
k =

w
(j)
k−1ζ

(j)
k

∑Nf

i=1 w
(i)
k−1ζ

(i)
k

, (33)

where ζ
(j)
k = N (zk : ẑ

′(j)
k ,S

′(j)
z,k S

′(j)T
z,k ).

Step 4: The number of terms in posterior mix-
ture grows exponentially, due to the fact that
the state and the measurement noise have a
Gaussian mixture form. Therefore, it is neces-
sary to reduce the number of terms. The sim-
plest way of mixture reduction is to retain only

a few Gaussians with highest weights w
(j)
k .

Step 5: Similarly as in the filtering step the
prediction pdf is determined in the form

p(xk+1|z
k) =

Np
∑

j=1

w
(j)
k N (xk+1 : x̂

′(j)
k+1,P

′(j)
k+1),

(34)

where number of Gaussians Np = Nf × Nw

and Nw denotes number of term in state noise
description. The j-th element of p(xk+1|z

k) is
calculated according to (28) - (30), ∀j.

Let k ← k + 1 and go to the Step 2.

The basic structure of the SPGSF algorithm is
quite similar to the GSF one. The substantial
differences can be found in the relations (32), (34)
where the components of filtering and predictive
pdf are obtained by means of the SRUKF instead
of the EKF in the GSF.

5. NUMERICAL ILLUSTRATION

The properties of the local SRUKF and the global
SPGSF will be discussed and illustrated in this
section.

The better estimation performance of the newer
local approaches (UKF, DDF) over the EKF is
well-known (Julier et al., 2000; Van Der Merwe
and Wan, 2003). Estimation performance of the
derived SRUKF is naturally the same as the
UKF, but the computational demands are slightly
smaller, because number of numerical operation in
the SRUKF algorithm is smaller.

The estimation performance of the global ap-
proaches, particulary the SPGSF, can be verified
with experiment presented e.g. in (Van Der Merwe
and Wan, 2003). Consider the nonlinear non-
Gaussian system with one-dimensional state

xk+1 = φ1xk + 1 + sin(ωπk) + wk (35)

with the state noise wk with Gamma pdf Ga(3, 2),
∀k, φ1 = 0.5, ω = 0.04 are scalar parameters and
k = 1, . . . , 60. The state is observed by the scalar
measurement described by the equation

zk =

{

φ2x
2
k + vk, k ≤ 30,

φ3xk − 2 + vk, k > 30.
(36)

The measurement zk is influenced by the mea-
surement noise vk ∼ N (vk : 0, 10−5), ∀k, and
the scalar parameters are φ2 = 0.2 and φ3 =
0.5. The initial condition is given by the mixture

of five Gaussians p(x0) =
∑5

j=1 w
(j)
−1 × N (x0 :

x̂
′(j)
0 , P

′(j)
0 ) =

∑5
j=1 0.2 × N (x0 : j − 3, 10). The

predictive pdf p(x0|z
−1) is equal to p(x0).

The SPGSF was compared with three different
global filters, specifically with a generic PF with
sampling-importance resampling, GMSPPF and
“standard” GSF based on the bank of the EKF’s.
The last two filters and the SPGSF used an ap-
proximation of the Gamma pdf in the state equa-
tion (35) by the Gaussian mixture p̃(wk) = 0.29×
N (wk : 2.14, 0.72) + 0.18 × N (wk : 7.45, 8.05) +
0.53 ×N (wk : 4.31, 2.29), ∀k which was obtained
with assistance of the EM algorithm. Both particle
filters (GMSPPF and generic PF) exploited 500



Table 1 Global filter estimation results.
Algorithm MSE Time(s)

PF 1.9262 3.28

GMSPPF 0.0156 4.90

GSF 0.0253 0.91

SPGSF 0.0149 2.08

particles. The GMSPPF used 5 Gaussians in the
mixture for the posterior state estimate. Reduc-
tion of components in the posterior pdf for the
GSF and the SPGSF is accomplished by the rejec-

tion of Gaussians with weight w
(j)
k < 0.05,∀k, j.

The experiment was repeated 100 times with re-
initialization for each run in order to calculate
Monte Carlo performance estimates for each filter.
The results for the global filters are presented in
the Table 1, where the mean square errorMSE =
∑

100

i=1

∑

60

k=1
(xi

k−x̂
i
k)2

6000 of the state estimate and the
computational time (in seconds) for each filter are
shown. The superscript i determines the order of
repetition.

Relatively poor estimation performance of the
standard PF is caused by the “sample depletion”
due to the small observation noise variance. This
problem is solved with Particle Filters which ex-
ploit SPKF’s (Van Der Merwe and Wan, 2003). As
an representative the GMSPPF was chosen which
gives a substantial improvement in estimation per-
formance. However, this improvement leads to the
growth of the computational demands. On other
hand, the GSF has the smallest computational de-
mands, but the estimation quality is worse. These
imperfections are rectified by the SPGSF which
provides the highly precious estimates as well as
the GMSPPF with computational cost slightly
higher than that of the GSF.

6. CONCLUSION

The UKF was described and modified to the
square root form which ensures the positive semi-
definiteness of state covariance matrixes and slight
reduction of computational demands. An inter-
esting attribute of the derived Square Root Un-
scented Kalman Filter algorithm concerning its
structure was discussed. It is in the form similar
to the structure of the filter algorithms based on
the Stirling’s approximation. Further, the novel
global method Sigma Point Gaussian Sum Filter
was proposed. It provides the same estimation
performance as the GMSPPF with reduced com-
putational demands and theoretical complexity.
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