
MODELING AND PREDICTIVE CONTROL OF
PELLET REACTORS FOR WATER

SOFTENING

K.M. van Schagen ∗,∗∗,1 R. Babuška ∗∗

L.C. Rietveld ∗∗∗ J. Wuister ∗∗ A.M.J. Veersma ∗∗∗∗

∗DHV Water B.V., P.O.Box 484, 3800 AL Amersfoort,
The Netherlands

∗∗Delft Center for Systems and Control, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, The

Netherlands
∗∗∗ Faculty of Civil Engineering and Geosciences, Delft

University of Technology, P.O.Box 5048, 2600 GA Delft,
The Netherlands

∗∗∗∗Amsterdam Water Supply, P.O.Box 8169, 1005 AD
Amsterdam, The Netherlands

Abstract: A nonlinear chemical/physical dynamic model in the form of partial
differential equations was adopted and further developed to serve as a basis for
model predictive control of a pellet reactor for drinking water softening. The model
was calibrated using full-scale process measurements. A linear predictive controller
based on a lineralization of the model has been designed to achieve the desired
hardness of the effluent water through cost-effective operation of the reactor. This
controller has been extensively validated in nonlinear simulations. The results are
promising and the strategy found by the predictive controller leads to a smoother
operation compared to the currently used heuristic controller.
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1. INTRODUCTION

To guarantee a high quality of drinking water,
the effluent of water treatment plants (WTP) is
subject to extensive monitoring. When a deterio-
ration of the water quality is detected, the settings
of the WTP are adjusted on the basis of operator
knowledge and experience. The quality of drinking
water is thus subject to the day-to-day decisions
of individual operators.
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Motivated by more stringent requirements on
drinking water quality and the desire to predict
the water quality, more attention has recently
been devoted to the research and development
of new methods for the integral control of WTP.
Recently, Amsterdam Water Supply, Delft Uni-
versity of Technology, DHV Water B.V. and ABB
B.V. started a project called ’PROMICIT’ (Pro-
cess modeling and Integrated Control of Water
Treatment). The aim is to achieve a breakthrough
in drinking water quality control by developing an
integral model of the total WTP and using this
model as a basis for quality control.



In this article, a new control scheme for softening
reactors is described. With the current heuristic
control strategy it is not possible to operate the
reactors optimally. Therefore it is necessary to
adopt a new control strategy.

The pellet softening is a process, which was de-
signed in the eighties (Graveland et al. 1983,
Dirken et al. 1990) and there have been a number
of publications on model description and process
kinetics (Harms and Robinson 1992, Tai and Hsu
2001). However, there is no known reference on
using this knowledge to develop a model-based
control scheme.

In this research, an existing process model (Ri-
etveld 2004) has been adopted, modified such that
it is suitable for control design and calibrated
by using on-line process data. Based on a lin-
earization of this model, a predictive controller
(MPC) has been designed. This design will serve
as a baseline solution for the evaluation of more
advanced strategies, based on nonlinear black-box
identification, adaptive control and learning.

The paper is organized as follows. In Section 2,
the model equations derived from first principles
are presented in a nonlinear state-space form.
Section 3 addresses the calibration and validation
of the model. The current control strategy is
described in Section 4 and the model predictive
controller in Section 5. Simulation results are
discussed in Section 6 and Section 7 concludes the
paper.

2. PELLET REACTOR AND ITS MODELING

This section describes the basic principle and the
mathematical modeling of the pellet reactors at
the considered WTP of the Amsterdam Water
Supply company.

2.1 Description of the pellet reactor

Pellet reactors are cylindrical vessels filled with
seeding material (garmet grains). Water is pumped
through the reactor in an upward direction at rela-
tively high speeds to maintain the grains fluidized.
In the bottom of the reactor, caustic soda (NaOH)
is dosed. As a result, calcium carbonate becomes
super-saturated and precipitates on the grains,
which gradually turn into marble-like pellets, pe-
riodically removed from the reactor and replaced
by new grains. These pellets are then reused in
industry (Dijk and Wilms 1991). A schematic
diagram of the reactor is shown in Fig. 1.

The aim of the softening controller is to maintain
the desired calcium concentration and at the same
time minimize the super-saturation of calcium
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Fig. 1. Softening pellet reactor.

carbonate in order to prevent calcium carbonate
deposits in the subsequent water treatment steps.
The available control inputs are the water flow
through the reactor, grain supply rate, pellet
discharge rate and NaOH dosage.

At the WTP, eight reactors are operated in par-
allel in order to guarantee robustness and relia-
bility of the system and to increase flexibility. To
achieve higher efficiency of the softening process,
the hardness is reduced more than required. Part
of the water can therefore be by-passed and mixed
with the effluent of the reactors.

2.2 Mathematical modeling

In the following, t denotes time, x distance from
the bottom of the reactor, [ · ] concentration, m
mass, ρ density, d diameter and F flow. Subscript
p is used for pellets, g for grains (the pellet seed),
w for water, c for calcium carbonate (CaCO3) and
n for caustic soda (NaOH). A complete list of
symbols is given in the Appendix.

The model has four state variables who’s dyna-
mics and distribution in the reactor is described
by:
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Equations (1) through (3) specify the dynamics
of the Ca2+ concentration, M -alkalinity and P -
alkalinity as a function of the crystallization rate



C, the water flow Fw and the bed porosity p.
Equation (4) describes how the mass of CaCO3

accumulated on the pellets depends on the crys-
tallization rate and on the pellet discharge rate vp

(in mass of grains per second).

In addition, the model contains an algebraic equa-
tion for the crystallization rate

C = kT · 6(1− p)
dp

· ([Ca2+][CO2−
3 ]−Ks

)
, (5)

where [CO2−
3 ] is found by solving the follow-

ing equations for the carbonic acid equilibrium
(Stumm and Morgan 1996):

M = 2[CO2−
3 ] + [HCO−3 ] + [OH−]− [H+

3 O]

P = [CO2−
3 ]− [CO2] + [OH−]− [H+

3 O]

K1 = [HCO−3 ][H+
3 O][CO2]−1 (6)

K2 = [CO2−
3 ][H+

3 O][HCO−3 ]−1

Kw = [H+
3 O][OH−]

with K1, K2, Kw being known (temperature-
dependent) constants. The bed porosity p is de-
rived from the equation of Carman-Kozeny (Bird
et al. 1960, Montgomery 1985):
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The pellet diameter dp is calculated by distribut-
ing the accumulated mass mc evenly over the
available (spherical) grains:

dp = dg
3

√
1 +

mc

mg

ρg

ρc
(8)

which also gives the pellet density:

ρp = (mc + mg)
(

mc

ρc
+

mg

ρg

)−1

. (9)

For control purposes, additional outputs are used.
An important indicator for monitoring the water
quality is the saturation index, defined as the
difference between the actual pH and the pH at
which [CO2−

3 ] equals Ks/[Ca2+], as a solution of
the equilibrium equations (6):

SI = log
(

[Ca2+][CO2−
3 ]

1
Ks

)
(10)

where Ks is the solubility product (a temperature-
dependent constant). The pressure drop over the
fluidized bed is also measured. In the model, it is
given by the submerged weight of the pellets:

∆P = (ρp − ρw)(1− p)Lg (11)

where L is the bed height:

L =
mp

ρp(1− p)A
. (12)

Finally, the effluent water pH (− log([H+
3 O]) is

also measured.

2.3 Model simulation

The equations presented in Section 2.2 are nonlin-
ear and can only be solved numerically. The flow
pattern in the reactor is approximated as a one-
dimensional flow, assuming several completely
mixed compartments in series. In each compart-
ment, the change of calcium concentration, cal-
cium carbonate accumulation, M-alkalinity and
P-alkalinity can be calculated in time by solv-
ing the discretized ordinary differential equations
simultaneously. The model is implemented as a
state-space model in MATLAB/Simulink with the
following inputs, states and outputs:

u = [Fw Fn vp]T (13)

x = [Ca2+
1 M1 P1 ms,1 Ca2+

2 . . .

Ca2+
n Mn Pn ms,n]T (14)

y = [Ca2+
n pH ∆P L dp,1 SIn]T (15)

The number of compartments n is determined
by examining the hydraulic retention time of the
reactor. In our case, the reactor is modeled by
using 10 compartments.

3. MODEL CALIBRATION

The model has been calibrated by using process
data of the WTP. The goal is to minimize the
difference between the measured data (ym) and
simulated data (ys). As the measurements are
taken with different sampling periods (varying
from a minute to one week), the cost for each
measurement is normalized by the number of
available samples Nm:

MSE =
6∑

i=1

1
Nm,i

Nm,i∑

k=1

(
ys,i(k)− ym,i(k)

ym,i(k)

)2

(16)

The first sum is the summation for all outputs, see
also (15), and k denotes discrete time index. For
two periods (summer and winter), five parameters
(Table 1) in the model were calibrated by fitting
simulation data to the data of eight independent
reactors in the plant. The initial state of each
run was estimated by calculating the steady-state
using the average inputs for the calibrated period
and the modified parameters. Using this initial
condition a simulation of a two week period was
performed.

Data from reactors 1,2,4,6,8 were used for the
summer period and from reactors 3,4,6,7,8 for



Table 1. Parameters to be calibrated
and their range.

Parameter Min Max

Mass of grains mg 100 4400
Reaction rate kT 0.001 0.050
Drag constant Cc 0 260
Drag coefficient Ce 0 1

the winter period. Data from the remaining re-
actors could not be used due to the maintenance
of a reactor, malfunction of sensors or missing
laboratory results. The pH, flow, temperature,
hardness and pressure drop are measured every
minute, while calcium, bicarbonate, super satura-
tion, pellet diameter, bed height are measured at
longer intervals (daily to weekly). Note that the
distribution of the state variables over the height
of the reactor cannot be measured on the process.

Table 2. Parameters and MSE (Summer).

No. mg kT Cc Ce MSE

1 799 0.0194 177 0.65 0.041
2 2175 0.0154 152 0.72 0.030
4 1839 0.0200 153 0.69 0.065
6 1830 0.0183 156 0.71 0.035
8 3676 0.0133 144 0.74 0.087

mean 2064 0.0173 156 0.70 0.052
σ 50% 16% 8% 5% 46%

Table 3. Parameters and MSE (Winter).

No. mg kT Cc Ce MSE

3 955 0.0100 154 0.66 0.024
4 2006 0.0066 145 0.69 0.018
6 3200 0.0083 156 0.75 0.085
7 2220 0.0079 133 0.68 0.026
8 1261 0.0094 139 0.71 0.023

mean 1928 0.0084 146 0.70 0.035
σ 46% 15% 7% 5% 79%

The calibration results are given in Tables 2 and 3.
One can see that the mass of grains considerably
differs from reactors to reactor, which indicates
that the reactors are in different states. The re-
maining parameters are within a reasonable range.
The comparison between summer and winter re-
veals the temperature-dependent reaction rate kT

(as expected).

4. CURRENT CONTROL STRATEGY

The eight parallel reactors are currently operated
at constant and equal setpoints. Depending on the
temperature, operators manually change the by-
pass ratio. There are four controllers that regulate
the softening process (Figure 2).

(1) The bypass controller is responsible for main-
taining the manually set bypass ratio.

(2) The flow distribution controller distributes
the total flow equally over the reactors.

(3) The caustic soda controller regulates the
NaOH dose to achieve the desired hardness
of the mixed effluent of 1.5mmol/l. The set-
point the NaOH dose is calculated by using
an empirical formula based on the bypass
ratio, the water flow, the effluent pH and a
manual correction.

(4) The pellet discharge controller in an on-off
controller that keeps the total pressure drop
over the reactor between 16.5 and 17.2 kPa
in order to limit the bed height (which is not
directly measured).

In summer, this operation practice results in a
higher bypass ratio and higher NaOH dosages.
In winter, hardly any bypass will be applied and
the NaOH dosages are lower. To be able to keep
the saturation index at acceptable levels, the
maximum pellet size is decreased in winter in
order to increase the crystallization surface. In
summer the opposite happens.
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Fig. 2. Current control loops.

5. MODEL PREDICTIVE CONTROL

With the current heuristic control strategy it
is not possible to operate the system optimally.
Therefore it is necessary to adopt a new control
strategy, which can take into account quality-
related and economic criteria and optimize the
overall performance of the bank of parallel reac-
tors. A two-level control architecture is proposed:

Local model predictive controllers (Camacho and
Bordons 1995) control the individual reactors.
They manipulate the caustic soda flow, water
flow and pellet discharge rate, while explicitly
respecting the physical constraints of the reactor
and additional constraints to guarantee smooth
changes of the control signals.

A supervisory controller determines set-points
and model and control parameters for the local
controllers. Its task is to find the optimal distri-
bution of the water flow over the reactors and
bypass channels and the desired effluent hardness
for each reactor, while minimizing the super satu-
ration and the total operational costs. Eventually,
the supervisory controller should also determine



whether reactors can be switched off (for economic
or maintenance reasons) or whether additional
reactors should be switched on (e.g., in peak-
load situations). A secondary goal may be the
control of the pellet properties (such as size) in
the individual reactors.

In this paper we focus on the MPC for a single
pellet reactor. The controller model is obtained
through numerical lineralization of the complex
nonlinear model of Section 3. The control objec-
tives are to follow the set-points of the super-
visory controller under smooth variation of the
manipulated inputs, as formulated in the following
objective function:

J =
N∑

j=Nm

‖y(k + j|k)− ry(k + j)‖2P

+
N∑

j=1

‖∆u(k + j|k)‖2Q∆u

+
N∑

j=1

‖u(k + j|k)− ru(k + j)‖2Qu
(17)

where N and Nm are the prediction horizon and
the minimum cost horizon, and ru and ry are the
references for the inputs and the outputs.

6. RESULTS AND DISCUSSION

To evaluate the performance of the controller,
simulations were performed for the summer pe-
riod, with varying reference signals for calcium
concentration and water flow. The reference for
the saturation index is zero. The parameters of
the nonlinear model used for the controller model
are the mean parameters given in Table 2. The
operating point for the linearized model is the
steady-state of the nonlinear model with the av-
erage influent flow, dosing and pellet discharge of
the calibrated reactors. The weighting matrices in
(17) are diagonal, given by:

P = diag ([3 0 0 0 0 2])

Qu = diag ([1 0 0])

Q∆u = diag ([1 5 2])

The non-zero weights in P and Qu penalize the
deviation of the Calcium concentration, Satura-
tion Index and water flow from their reference
values, see also (13) and (15). Change in the ma-
nipulated variables are penalized to get a smooth
transition between operation points. In addition,
level constraints are defined for all outputs and
inputs, based on their physical ranges. To make
the simulation more realistic, noise was added to
the simulated outputs.

The simulation results using the nonlinear process
model of Reactor 4 are shown in Figures 3 and 4.

The reference signal for the flow was 350 m3/h
with a step to 400 m3/h after 55min. for the Cal-
cium concentration, a reference of 40 mg/l with a
step to 30 mg/l was used.
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It can be seen, that the tracking of the refer-
ence signal is appropriate, including the desired
smooth transition. Notice that in order to track
the calcium reference, the MPC automatically
lowered the flow to the reactor after 30 minutes.
Another interesting observation is that the water
flow through the reactor and the NaOH dosage
are not strictly linked (as opposed to the current



heuristic strategy). A flow reference change shows
a rapid flow response, but a relatively slow dosage
response, which results in a negligible change of
the Saturation Index.

7. CONCLUSIONS AND FUTURE
RESEARCH

A new control scheme for softening pellet reactors
has been proposed to replace the current heuristic
control strategy. A white-box process model has
been successfully calibrated and used in model-
predictive control. Simulations show that MPC
has a good potential for controlling the pellet
reactor, by explicitly taking into account quality
and economic control objectives and constraints.
The most significant difference from the current
control strategy is the multi-variable character of
the controller and the smoothness of the control
actions, which required from the practical opera-
tion viewpoint.

This design will serve as a baseline solution for the
evaluation of more advanced strategies, based on
nonlinear black-box identification, adaptive con-
trol and learning. From December 2004 the first
results of the implementation of the developed
control scheme on a pilot plant will be available.
Our future research will focus on the develop-
ment of the supervisory controller and a suitable
method for dealing with significant time delays
and multi-rate sampling in the measurements.
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Appendix A. LIST OF SYMBOLS

Input variables:

Fw water flow through reactor m3s−1

Fn caustic soda flow m3s−1

vp pellet discharge rate kg s−1

State variables:

[Ca2+] concentration of Ca2+ mmol/l
M m-alkalinity mmol/l
P p-alkalinity mmol/l
mc accumulated mass of CaCO3 kg

Other variables:

C crystallization rate mmol l−1 s−1

dp pellet diameter m
L bed height m
p bed porosity –
pH pH value –
SI saturation index –
∆P pressure drop over the bed Pa

Parameters:

A reactor area m2

Ks solubility product mmol2/l2

K1,2 equilibrium constants mmol/l
Kw equilibrium constant mmol2/l2

kT reaction rate l m s−1 mmol−1

Mc CaCO3 molecular weight g/mmol
ρc density of CaCO3 kg/m3

dg grain diameter m
mg mass of grains kg
ρg grain material density kg/m3

ν viscosity of water m2/s
g gravity constant m/s2

Cc drag constant –
Ce drag exponent –
ρw density of water kg/m3
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