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Abstract: The best test of quality of an estimated model is its implementation in real
application. However, the use of a bad model is typically too costly. Therefore, model
validation is considered as an obligatory step in model learning, and extensive theory
has been developed within statistical community. However, the available rules deal
almost exclusively with independent data samples. Consequently, they are substantially
disqualified for validation ofdynamicmodels.
This paper approaches the problem using Bayesian formulation and solution. An algo-
rithm for validation of models estimated within practically important exponential family
is presented. Performance of the algorithms is illustrated on simulated example.Copyright
c© IFAC 2005
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1. INTRODUCTION

Learning is a standard part in model building (Ljung,
1987; Bohlin, 1991). In order to avoid costly con-
sequences of employing inadequate model, the es-
timated model has to be validated before its final
use. This led to development of an extensive theory
dealing with model validation, see e.g. the review
(Plutowski, 1996). However, the available procedures
deal almost exclusively with independent data sam-
ples. Consequently, they cannot be used for validation
of dynamicmodels. Just a few exceptions are available
(Huang, 2001), addressing only special cases.

A real need for systematic validation of dynamic
models motivated us to develop a general validation
procedure based on Bayesian decision making theory
(Berger, 1985).

After preparatory Section 2, the addressed problem is
formulated and solved in Section 3. The solution is
applied to estimation in dynamic exponential family,
(Barndorff-Nielsen, 1978), in Section 4. Performance
of the algorithm is illustrated on a simple example in

Section 5. The paper is closed by concluding remarks,
Section 6.

2. PRELIMINARIES

The paper uses the following notations:≡ is equality
by definition;X∗ denotes a set ofX-values;X̊ means
cardinality of a finite setX∗; f(·|·) denotes proba-
bility density function (pdf);∝ means equality up to
a normalizing factor;t labels discrete-time moments,
t ∈ t∗ ≡ {1, . . . , t̊}; t̊ < ∞ is a given learning
horizon; dt = (yt, ut) is the data record at timet
consisting of an observed system outputyt and of an
optional system inputut; xt is an unobserved sys-
tem state;X(t) denotes the sequence(X1, . . . , Xt),
X(t) ∈ {d(t), y(t), u(t), x(t)}.
The following simplifications are also adopted.

• Names of arguments distinguish pdfs. No formal
distinction is made between a random variable,
its realization and a pdf argument.



• All integrals are definite and multivariate. The
integration domain coincides with support of the
pdf in its argument.

The joint pdf f(d(̊t), x(̊t)|x0, d(0))f(x0|d(0)) =
f(d(̊t), x(̊t)|x0)f(x0) of involved random variables
is the most complete probabilistic description of the
controlled closed loop. In it,x0 is initial uncertain
state. The symbold(0) stands for the prior information
available before the choice of the first input. Habitu-
ally, d(0) is considered implicitly.

The chain rule for pdfs (Peterka, 1981) implies the
following decomposition of the above joint pdf

M : f(d(̊t), x(̊t)|x0) = f(x0)×
∏
t∈t∗

×

× f(yt|ut, d(t− 1), x(t))︸ ︷︷ ︸
observation model

×

× f(xt|ut, d(t− 1), x(t− 1))︸ ︷︷ ︸
state evolution model

×

× f(ut|d(t− 1), x(t− 1))︸ ︷︷ ︸
randomized controller

. (1)

The followingassumptionsare adopted

Observation model ofyt depends on a finite dimen-
sionalregression vectorψt, which is a function of
ut, dt−1, . . . , dt−∂ , ∂ <∞, and on the system state
xt

f(yt|ut, d(t− 1), x(t)) = f(yt|ψt, xt).

State evolution model ofxt depends on the vectorψt

and the past system statext−1

f(xt|ut, d(t− 1), x(t− 1)) = f(xt|ψt, xt−1).

Randomized controlproviding the system inputut

is admissiblethus exploits only the observed data
historyd(t − 1) and ignores the unobserved states
x(t− 1)

f(ut|d(t− 1), x(t− 1)) = f(ut|d(t− 1)).
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Hence, the closed loop description (1) reduces to

f(d(̊t), x(̊t)|x0) =
∏
t∈t∗

f(yt|ψt, xt)×

× f(xt|ψt, xt−1)f(ut|d(t− 1)) (2)

and the following proposition holds.

Proposition 1.(Filtering in closed control loop).
Let the pdf f(x0) be given,d(0) together withu1

determines the initial regression vectorψ1 and the
assumptionshold. Then, the pdff(xt|d(t)), is the
state estimate, the pdff(xt|ut, d(t − 1)) determines
the state prediction, and the pdff(yt|ut, d(t − 1)),
gives theoutput prediction. They evolve as follows

Time updatingf(xt|ut, d(t− 1)) =

=
∫
f(xt|ψt, xt−1)f(xt−1|d(t− 1)) dxt−1

Data updatingf(xt|d(t)) = (3)

=
f(yt|ψt, xt)f(xt|ut, d(t− 1))

f(yt|ut, d(t− 1))
Output predictionf(yt|ut, d(t− 1)) =

=
∫
f(yt|ut, d(t− 1), xt)f(xt|ut, d(t− 1)) dxt.

Proof: Omitted, see e.g. (Peterka, 1981).2

3. PROBLEM FORMULATION AND SOLUTION

Learning aims to find thebest modelboM ∈ M∗

of the inspected controlled system. Without explicit
specification of the modelling aim, posterior distribu-
tion on the whole spaceM∗ should be built before
selecting the relevant model. The set of modelsM∗

(1) is, however, infinite dimensional and a practical
construction of the prior distribution over it, as well
as evaluation of its moments, is intractable.

Therefore, the prior is considered to be uniform on
M∗, which implies that the maximum likelihood esti-
mate is the best modelboM. The likelihood function
L(d(̊t),M) of M is equal to the factor off(d(̊t)|M)
that depends onM. Thus, the construction of the
likelihood function is implied by Proposition 1

L(d(̊t),M) =
∏
t∈t∗

f(yt|ut, d(t− 1),M)︸ ︷︷ ︸
output prediction (3)

. (4)

Hence, the estimation selects among various models
fromM∗ the model with the highestv-likelihood (4)
(likelihood on model variants).

Model validation is an additional test on the quality of
boM. Inspired by the classical model validation theory
(Plutowski, 1996), all theavailable dataare splitd(̊t)
into (i) learning databld, and (ii)validation databvd.
The best modelboM is learnt on the learning databld
and its performance is checked on the validation data
bvd. The validation technique essentially inspects how
good is the bestdynamicmodel boM in extrapolating
of the past to the future. Thus, the learning databld
has to form the “prefix” part ofd(̊t) and the validation
data bvd the “suffix” part.

The results of validation strongly depend on the choice
of the cutting moment, which splits the available data
into learning and validation parts. None of the existing
methods, (Plutowski, 1996), is directly prepared for
the considered dynamic models. These models allow
just cutting into contiguous sequences. Essentially, the
available data up to acutting momentτ are taken
as learning data and the rest as validation data. This
reduces the number of possible choices of learning
and validating data. At the same time it disqualifies
majority of the available analysis. This motivates us to



design an adequate, purely Bayesian, solution of the
model validation problem.

3.1 Validation with fixed cutting moment

Let us consider a fixed cutting momentτ ∈ t∗ ∪ {0},
which defines

learning data bld(τ) ≡ d(τ) (5)

validation data bvd(̊t \ τ) ≡ (dτ−∂ , . . . , d̊t). (6)

The following hypotheses are considered.

H0 ≡ All recorded datad(̊t) are described by the
learnt modelboM.

Thev-likelihood of this hypothesis results from stochas-
tic filtering on all data giving

f(d(̊t)|H0) ∝ L(d(̊t), boM). (7)

H1 ≡ Learning data and validation data should be
described by individual models.

The correspondingv-likelihood results from indepen-
dent filtering on learning and validation data giving

f(d(̊t)|H1, τ)∝L
(
bld(τ), boM|τ

)
×

×L
(
bvd(̊t \ τ), b1M|τ

)
. (8)

Note that the proportionality factor formed by the ran-
domized controller (1) is common for both hypothesis.

The model b1M used on validation data may differ
from boM. The strength of the constructed test de-
pends significantly on the choice of the competing
model b1M. It was chosen as follows: (i)b1M has the
same structure asboM, (ii) it is learnt on validation
data, (iii) prior pdf in the validation phase is chosen
as flattened version of the state estimate gained in the
learning phase. Spread of the flattened pdf should be
comparable to that of the prior pdf used on the learning
data. This will be illustrated in detail in Section 4.

This choice intuitively meets the requirement on a real
competitor: learning is exploited without fixing the re-
sults too much and thus without restricting possibility
to fit the validation data in a better way.

The principle of validation is graphically illustrated
in Figure 1. Estimation on the whole datad(̊t) yields
result in the class time invariant models. Estimation
on the separate data sets yields result in the class of
models switched at the cutting moment. The latter
class is, of course, richer but it has smaller portion
of data per estimated variable at disposal. Thus, the
winner is not a priori determined.

With no prior prejudice,f(H0|τ) = f(H1|τ), the
Bayes rule provides the posterior pdff(H0|d(̊t), τ).
The learnt model can be accepted as a good one if the

System 2System 1

Switching models

single model

Fig. 1. Scheme of the proposed validation. El-
lipses denote classes of models, small circles de-
note alternative “positions” of the real system
with respect to the model class. The crosses de-
note models of the systems estimated within each
class. Dashed lines signify distances of the sys-
tem to the best models. The hypothesisH0 is
expected to win for System 1 andH1 for System
2.

posterior pff(H0|d(̊t), τ) is high enough. Otherwise,
we have to search for the reason why the chosen
model is not reliable enough. It gives the algorithmic
solution.

Algorithm 1.(Model validation for a fixedτ ).

(1) Select a model structure and the prior pdf.
(2) Run filtering, Proposition 1, on the learning

bld(τ) and fulld(̊t) data.
(3) Flatten the filtering result obtained on learning

data and use it as the prior pdf for learning on
validation databvd(̊t \ τ).

(4) Evaluate thev-likelihoods L ( bld(τ), b0M|τ),
L ( bvd(̊t \ τ), b1M|τ) andL (

d(̊t), b0M)
.

(5) Using the Bayes rule, probability that the learn-
ing was successful is

f
(
success|d(̊t), τ) ≡ f

(
H0|d(̊t), τ

)
= (9)

=

(
1 +

L ( bld(τ), b0M|τ)L ( bvd(̊t \ τ), b1M|τ)

L (
d(̊t), b0M)

)−1

where likelihoods of both hypotheses are given
by (7) and (8) respectively.

(6) The validation test is successfully passed, for a
givenτ , if f(H0|d(̊t), τ) is close to 1. Otherwise,
measures for a better learning have to be taken.
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3.2 Validation with multiple cutting moments

Results of the test depend, often strongly, on the
selected cutting momentτ . Thus, it makes sense to
validate learning for various cutting momentsτ ∈
τ∗ ⊂ t∗. We are making a pair of decisions(Ĥ, τ)
based on the available datad(̊t). We selectτ ∈ τ∗ and
accept (̂H = H0) or reject (Ĥ = H1) the hypothesis
H0 that the learnt model is valid.



We solve this static decision task and select the op-
timal decision boĤ on inspected hypotheses and op-
timal cutting time momentboτ as a minimizer of
the expected loss. We assume, for simplicity, that the
losses caused by a wrong acceptance and rejection are
identical, say (without loss of generality)1. The loss
function is thus chosen as

Z(H, Ĥ, τ) = 1− δ
(
Ĥ(τ)−H

)
, Ĥ,H ∈ {H0, H1} ,

whereδ(·) is Kronecker delta for discrete arguments
and Dirac delta in continuous case. The optimal de-
cision boĤ, boτ minimizes expected valueE [·] taken
over uncertain datad(̊t) and hypothesisH

boĤ, boτ ∈ Arg min
Ĥ,τ∗

E
[
Z(H, Ĥ, τ)

]
. (10)

Proposition 2.(Optimal cutting). Let0, t̊ ∈ τ∗. Then,
the optimal decisionboĤ about the inspected hypothe-
sesH0,H1 and the optimal cuttingboτ , that minimize
the expected loss in (10), are given by the following
rule.

Computeb0τ ∈ Arg max
τ∈τ∗

f(H0|d(̊t), τ)
b1τ ∈ Arg min

τ∈τ∗
f(H0|d(̊t), τ) (11)

SelectboĤ = H0,
boτ = b0τ if

f(H0|d(̊t), b0τ) ≥ 1− f(H0|d(̊t), b1τ)
boĤ = H1,

boτ = b1τ if

f(H0|d(̊t), b0τ) < 1− f(H0|d(̊t), b1τ).

Proof: Let us consider the set of cutting moments
b0τ∗ ≡ {

τ ∈ τ∗ : f(H0|d(̊t), τ) ≥ 0.5
}

. This finite
set is non-empty, as forτ = 0 f(H0|d(̊t), τ) = 0.5.
For a fixedτ ∈ b0τ∗, the decisionĤ = H0 leads
to a smaller loss than the decision̂H = H1. The
achieved minimum is expectation overd(̊t) of 1 −
f(H0|d(̊t), τ). Thus, it is smallest forb0τ maximizing
f(H0|d(̊t), τ) on b0τ∗.

For any fixedτ in the set b1τ∗ ≡ {τ ∈ τ∗ :
f(H0|d(̊t), τ) ≤ 0.5}, the decisionĤ = H1 leads to a
smaller loss than the decision̂H = H0. The achieved
minimum is expectation overd(̊t) of f(H0|d(̊t), τ).
Thus, it is smallest forb1τ minimizing f(H0|d(̊t), τ)
on b1τ∗.

The smaller of the discussed pairs of minima deter-
mines the optimal decision pair. 2

Practical applications of the above test strongly de-
pend on the setτ∗ of the considered cutting moments.
The finest possible choice isτ∗ = t∗. The exhaustive
search is too demanding for extensive data sets. Search
for the minimizer by a version of golden-cut rule, by
a random choice or by a systematic inspection on a
small predefined grid can be applied. The predefined
grid seems to be the simplest and still relevant variant
as minor changes inτ∗ make little physical sense.

4. APPLICATION TO ESTIMATION

This section applies the obtained result to parameter
estimation. Estimation is a special case of filtering
with time invariant statext = xt−1 ≡ Θ ∈ Θ∗ ⇔
f(xt|ψt, xt−1) = δ(xt − Θ), which is the formal
time-evolution model for time-invariant state. In this
case, the time-updating step, Proposition 1, becomes
identity and the pdff(Θ|d(t)), describing parameter
estimates, is evolved only via the data updating.

Moreover, models indynamic exponential family (EF)
are considered, for which the observation model is
traditionally calledparameterized model. Introducing
thedata vectorΨt ≡ [yt, ψt], the membersM of the
EF have the form

f(yt|ut, d(t− 1),Θ) = A(Θ) exp 〈B(Ψt), C(Θ)〉 ,

whereA(Θ) ≥ 0 and〈·, ·〉 is a scalar product on the
involved array functionsB(Ψt), C(Θ) of compatible
dimensions.

Estimation of this family, i.e. computation of the pos-
terior pdfsf(Θ|d(t)), t ∈ t∗, reduces to the algebraic
updating of sufficient statistics

Vt = Vt−1 +B(Ψt), νt = νt−1 + 1 (12)

that determine thereproducing form of the posterior
pdf

f(Θ|d(t),M) =
Aνt(Θ) exp 〈Vt, C(Θ)〉

L(Vt, νt,M)
(13)

L(Vt, νt,M) ≡
∫
Aνt(Θ) exp 〈Vt, C(Θ)〉 dΘ.

The reproduction is achieved when using theconju-
gate prior pdf that has the form (13) fort = 0 and
whose statisticsV0, ν0 determine the initial conditions
in (12)

• for learning data, for which the recursion runs up
to the cutting momentτ and gives the statistics
blVτ ,

blντ ,
• for all data, for which the recursion runs over all

data up to̊t and gives the statisticsVt̊, ν̊t.

Flattening of the pdf obtained on the learning data
preserves the functional form (13). Its statistics at
cutting momentτ that have the same spread as the
prior pdf are given by formulas

bvVτ = λτ
blVτ ,

bvντ = λ blντ with

λτ ≡ ν0
blντ

≤ 1. (14)

The statisticsbvVt̊,
bvν̊t on validation databvd(̊t \

τ) are obtained via recursion (12) starting from the
statistics (14) at the cutting timeτ .

We deal with a fixed model structure and respective
models differ just by statistics. So that we can drop
the argumentM in thev-likelihood (13).



With the introduced notations, the posterior probabil-
ity (9) of the hypothesisH0 (i.e. modelling is success-
ful) gets the formf(H0|d(̊t), τ) =

=

(
1 +

L ( blVτ ,
blντ

)L ( bvVt̊,
bvν̊t

)

L (Vt̊, ν̊t)L
( bvVτ , bvντ

)
)−1

. (15)

Formula (15) and Proposition 2 determine validation
algorithm. For presentation simplicity, we shall write
it down on the fixed grid of possible cutting moments

τ∗ = {τ1 = 0 < τ2, . . . , ττ̊−1 < ττ̊ = t̊}.

Note that the relatively complex logic tries to mini-
mize operations connected with computationally ex-
pensive accumulation of sufficient statisticsV, blV, bvV
for respective cutting moments.

Algorithm 2.(Estimation with validation in EF).Initial
phase

• Select a model from exponential family and
structure of its regression vector.

• Select the prior statisticsV0, ν0.
• Set blV0 = V0,

blν0 = ν0.

Collection of statistics

For i = 1, . . . , τ̊

Set∆i = 0dim(V ), ρi = 0

For t = 1, . . . , t̊

If t ∈ (τi, τi+1]

∆i = ∆i +B(Ψt), ρi = ρi + 1

end of If

end of the cycle overt
blVτi = blVτi−1 + ∆i

blντi = blντi−1 + ρi

end of the cycle overi

Validation

Set b1τ = b0τ = 0, b1p = b0p = 0.5

Set bvVτ̊ = 0dim(V ),
bvντ̊ = 0

Cτ̊ = L( blVτ̊ ,
blντ̊ )

For i = τ̊ , . . . , 2
bvVτ̊i−1 = bvVτ̊i + ∆i

bvντ̊i−1 = bvντ̊i + ρi

λi−1 =
ν0

blντi−1

bvV0 = λi−1
blVτi−1

bvν0 = λi−1
blντi−1

Ci−1 = L( bvV0,
bvν0)

blLi−1 ≡ L( blVτ̊i−1 ,
blντ̊i−1)

bvLi−1 ≡ L( bvVτ̊i−1 + bvV0,
bvντ̊i−1 + bvν0)

f(H0|d(̊t), τi−1) =
(

1 +
blLi−1

bvLi−1

Cτ̊Ci−1

)−1

If f(H0|d(̊t), τi) > b0p

Set b0p = f(H0|d(̊t), τi), b0τ = τi

else iff(H0|d(̊t), τi) < b1p
b1p = f(H0|d(̊t), τi), b1τ = τi

end of if

end of else

end of the cycle overi

If 1− b0p < b1p

accept the modelM learnt ond(̊t) (!)

else

reject the modelM.

5. ILLUSTRATIVE EXAMPLE

Performance of the validation procedure described by
Algorithm 2 was tested on a simulated autoregressive
system of the fourth order generating 300 data, see full
line in Figure 2. The validation procedure was applied
on a uniform grid with distance of cutting moments
equal to 10 samples.

First, Algorithm 2 was run while estimating the model
of the correct fourth order. The results confirmed
model validity: probabilities of the hypothesisH0 for
respective cutting moments were greater than 0.8. In
fact, they practically equaled to one with exception of
the initial and final non-trivial cutting moments.

Second, Algorithm 2 was run while estimating the
model of the incorrect second order. The results con-
firmed model invalidity: probabilities of the hypothe-
sisH0 for several cutting moments fallen to zero. All
probabilitiesH0 are plotted, together with data, Figure
2 as circles connected by dotted line.

These results indicate that the validation procedure re-
acts appropriately on those parts of the system behav-
ior, which are insufficiently explained by the model
of insufficient order. It also confirms sensitivity of the
validation with a fixed cutting moment: for instance,
cutting the data at time 200 only leads to acceptance
of the invalid model.

6. CONCLUDING REMARKS

A method for cross-validation of an estimated dy-
namic model on a finite data set was proposed. The
method cuts data into the learning and the validation
parts and uses Bayesian approach to test hypotheses
(i) the learning data sufficiently represent the whole
data set within the given class of models, with (ii)
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Fig. 2. System measurements (full line) and probability of the hypothesisH0 (circles and dotted line).

the validation data brings new information that is not
absorbed by the model.

The results of validation may significantly differ for
different cutting alternatives. Therefore, the problem
was formulated for multiple cutting times and both
acceptance of the hypothesis on model validity and
cutting moment were optimized within a standard
Bayesian decision making set up.

Application of the method to estimation in the ex-
ponential family models yields a computationally
tractable algorithm that allows – in one sweep – to
investigate multiple cutting points.

Experience indicates that the chosen symmetric loss
function might be dangerous. Typically, the loss asso-
ciated with choice of the wrong model is higher than
the loss associated with rejection of the simpler, yet
sufficient model. Thus, the decision should be modi-
fied in this respect to make the decision rule practical.
Most importantly, however, the proposed rule has to
be elaborated algorithmically for widely used models
like mixture models, linear state space models etc.
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