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Abstract: Typically in pulp and paper processes raw material quality variation due to 
seasonal deviations as well as measurement drifts cause difficulties in setting the tight alarm 
thresholds for quality and control measurements. By using adaptive thresholds, more 
sensitive measurement range and thus reduced quality variation can be achieved. In this 
paper, new adaptive classification algorithm is proposed and validated using simulated and 
real mill data.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
There is a need in the pulp and paper industry for 
adaptive thresholds due to seasonal deviations in the 
properties of the raw materials. These properties have 
a great influence on the quality of end products. 
Especially in cold climates ice and water cause chip 
handling problems and difficulties in latter process 
stages. Also the huge temperature differences 
between summer and winter times especially in 
Scandinavia and in northern America cause variation 
to the wood fiber properties and other process 
variables. Several process stages needed in paper 
manufacturing process and different control actions 
done by several operators cause variation to pulp and 
paper properties as well. 
 
There are a few reported studies on the effects of the 
seasonal deviations to thermomechanical pulping 
(TMP) and final paper quality. According to  
Cutshall (1990), one key point to reduce variation in 

the pulp and paper processes is to understand 
fluctuations in raw material properties caused by 
different circumstances in soil, wind, temperature etc.  
 
Strand (1987) used factor analysis in the 
characterisation of the high yield pulps and Browne 
et al. (2003), expanded that study by using factor 
analysis in studying chip properties linked to the time 
of the year. They examined several properties from 
TMP pulp and showed that pulp properties depend on 
wood properties in two different ways. A portion of 
the variation in pulp properties is related to the 
brightness and another portion is due to physical 
properties of the wood. Seasonal and geographic 
variations have an effect on both of these wood 
properties. 
 
Fuhr et al. (1998) studied the effects of the seasonal 
deviation to the TMP pulp, paper machine’s wet end 
properties and final newsprint paper quality. They 
showed that seasonal deviations in raw material 



     

cause systematic deviation at least following 
variables: TMP fiber length, bark content, white 
water pH, headbox sulphite content and cross 
directional tear strength.  
 
Tyrväinen (1997) showed that bonding properties 
and brightness of the TMP pulp change across the 
season. Wood (2000) stated that when wood-induced 
variations of pulp properties are present it is unlikely 
that refining control systems will be able to bring all 
the properties within specifications. 
 
Thresholds for warning and alarming are usually kept 
unchanged in process monitoring. Indeed, they are 
tuned occasionally by operators typically without any 
specific rules. In this paper’s approach, the thresholds 
are changed all the time but the relative proportions 
of normal, warning and alarming observations are set 
and kept unchanged. With this kind of adaptivity the 
variations in process raw materials and in process’s 
actual performance are taken into account. 
 
Classifying new observations into existing groups 
means that any new groups are not going to be 
formed as in clustering cases (James, 1985). This 
paper is not either going to proof that any of these 
assumed groups really exist within some data as in 
the case of variance analysis. The only target is to 
make a decision with each observation if it is a 
member of normal, warning or alarming groups 
while the bounds (thresholds) of the groups are 
changing. The classification itself is reduced to 
simple comparisons with these bounds and the main 
interest and focus is in the adaptation mechanism.  
 
 

2. ADAPTIVE CLASSIFIER ALGORITHM 
 
An Adaptive Threshold Classifier (ATC) is a novel 
procedure, which classifies the measurement values 
in different subgroups according to their adaptive 
thresholds. ATC can be used both in the evaluation 
of the performance of the processes and in the 
identification of the faults in measurement and 
control loops. The algorithm consists of 
superimposed calculation blocks in which the 
counters and adaptive thresholds are taken place.   
 
The calculation proceeds in the following sequence: 
 

• initialisation of the algorithm 
• signal status validation and scaling 
• classification 
• counter updating 
• counter scaling 
• error signal calculation 
• step length calculation 
• threshold updating 
• threshold overlap checking  
• safety threshold checking 

 

2.1 Initialisation of Algorithm 
 
Initial thresholds should be placed as near the 
adapted values as possible and expert knowledge can 
be used in determining the preliminary alarming and 
warning threshold values.  
 
If the initial values of the thresholds are not close 
enough to the adapted values, the thresholds 
fluctuates and the settling time grows excessively. 
The initial values could be calculated by using the 
standard deviation of the measurement values. A 
good starting point and a good practise (in the case of 
five subgroups) is as follows: 

 
Tau(0)=µ+3σ    (1) 

 
Tal(0)=µ-3σ    (2) 

 
Twu(0)=µ+2σ    (3) 

  
Twl(0)=µ-2σ    (4) 

 
where Tcj(0) are the initial values of the thresholds 
and the subscript c indicates warning (w) or alarming 
(a) and subscript j upper (u) or lower (l) areas, 
respectively. In the case of the measurements 
containing only three classes, only upper limits for 
the alarms and warnings exist. The symbols µ and σ 
denote the mean value and the standard deviation of 
the classified signal, respectively.  
 
It is supposed that the classified signals are Gaussian 
distributed, containing white noise. The initial ratios 
of the specific area (IRij) could be determined by the 
probabilities for an observation belonging to the 
certain subgroup: 
 

IRru=P(s(k)≥µ+3σ)   (5) 
 

IRrl=P(s(k)≤µ-3σ)    (6) 
 

IRyu=P(µ+2σ≤ s(k)<µ+3σ)   (7) 
 

IRyl=P(µ-3σ<s(k)≤µ-2σ)   (8) 
 

IRg=P(µ-2σ<s(k)<µ+2σ)   (9) 
 
where P(.)  is a probability function for the 
observations of the signal s(k) (k denotes discrete 
instants of time) located in the respective subgroups. 
The subscripts r, y and g denote red, yellow and 
green areas, respectively. 
 
 
2.2 Signal Status Validation and Scaling 
 
Due to the adaptive nature of the ATC algorithm, it is 
necessary to validate the condition of the signals 
prior to classification. The minimum requirement is 
to separate the “dead” signals, where there is no 



     

variation at all, and on the other hand the signals that 
have unstable oscillation. It is also important to check 
the operation points of the signals to interrupt 
calculations under known special situations (start up, 
maintenance etc.). 
 
A practical way to identify “dead” measurements is 
to limit the minimum acceptable standard deviations 
of the signal. Limiting the maximum acceptable 
standard deviations identifies unstable signals. 
Furthermore, it is useful to limit the rate of change of 
the standard deviations. The absolute limit values 
indicating the signal to noise ratio (SNR) are also 
needed. The following equations may be used for all 
of the presented purposes  
 

amin*σ(k -1)< σ(k)<amax*σ(k -1)  (10)  
 

bmin<SNR(k)<bmax,   (11)  
 
where SNR is calculated simply by the following 
equation 
 

)k(s
)k(µ

)k(SNR =     (12)  

 
and amin, amax ,bmin and bmax are fixed parameters. 
 
All the signals to be classified are scaled to zero 
mean and unit variance by using the common scaling 
equation 
 

)k(
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σ

µ−
=    (13)  

 
where r(.)  is the original signal and s(.)  is the scaled 
one. The number of observations in the equations 
(10-13) depends on the system’s dynamics. Before  
the scaling the calculations of the mean and deviation 
values are based on the observations already 
validated from the reasonability standpoint, 
excluding abnormal situations of the system. Thus 
the scaling of the initial values becomes equal for the 
individual measurements.  
 
 
2.3 Classification 
 
The scaled values are fed to the threshold comparison 
block. The ATC compares the scaled signal value 
with the determined thresholds and adds one 
increment unit to the counter of the corresponding 
subgroup area. At the same time the sum counter is 
also incremented. The subgroup areas could be 
defined as follows: 
 
The upper red area,  

Rru(k): s(k) = Tau(k)   (14)  
 
The upper yellow area, 

Ryu(k): Twu(k) ≤ s(k) < Tau(k)  (15)  

The green area,  
Rg(k): Twl < s(k) < Twu(k)   (16)  

 
The lower yellow area,  

Ryl(k): Twl(k) ≤ s(k) < Tal(k)  (17)  
 
The lower red area,  

Rrl(k): s(k) ≤ Tal(k)   (18)  
 
It is also possible to define only three subgroup areas 
by excluding either the upper or the lower red and 
yellow subgroup areas. In the case of five subgroup 
areas the counter increments are made as follows: 
 

Cij(k) = Cij(k -1) + inc   (19) 
 

where Cij(.)  is the subgroup area counter 
corresponding the latest signal value. The subscript i 
denotes red (r), yellow (y) or green (g) colours and j 
denotes upper (u) and lower (l) areas. In the case of 
green subgroup, the upper and lower areas are not 
separated. The increment unit inc is stated to be one. 
After increments all the counters are filtered to 
maintain their sum value constant. Indeed, the 
increment is filtered out so that only the mutual ratios 
of the counters vary. 
 

Cij(k) = αCij(k -1)    (20) 
  

The filtering factor α is maintained constant  during 
on-line calculations, but it is calculated off-line as 
follows: 
 

1  <
+

= αα ,
incC

C

max

max    (21) 

 
where Cmax is a tuning parameter describing the 
maximum value of counters. It affects to the 
sensitivity of the threshold changes defining their 
frequency band.  
 
After the counter increments and filtering the new 
subgroup areas are calculated as follows: 
 

Rij(k) = C ij(k)/ SC    (22) 
 
where SC is the sum of subgroup area counters, 
which defines the adaptation speed. The slower the 
changes of the process are, the bigger the SC value 
should be.  
 
A new subgroup area is then compared to the initial 
ratios of the subgroup areas producing an error signal 
eij(.)  
 

eij(k) = Rij(k)- IRij    (23) 
 
Next , a step length for a threshold update are 
calculated based on the error signal 
 

ηcj(k) =β*eij(k)    (24) 



     

where β is a tuning factor. The value of the factor is 
depending on the filtering parameter Cmax: high 
values of β presume high values of Cmax and vice 
versa. 
 
Finally, the thresholds are adapted as follows: 
 

Tcj(k+1)= Tcj(k)+ηcj(k), when j=u,  (25)  
 

Tcj(k+1)= Tcj(k)- ηcj(k), when j=l  (26)  
 
When the ratios of the observation numbers differ 
from their initial values, the thresholds are moved so 
that the mutual ratios of observation numbers 
approach the preset ones. 
 
 
2.4 Overlap and safety checking 
 
It is  possible that the lower threshold for some reason 
gains greater value than the upper threshold. These 
kind of faulty situations are checked and blocked out 
by using the following comparison: 
 

Tcl(k)<Tcu(k), ∀ k=0,1,2,3,...n   (27)  
 

Twu(k)<Tau(k), ∀ k=0,1,2,3 ,...n  (28)  
 

Tal(k)<Twl(k), ∀ k=0,1,2,3,...n   (29)  
 
To ensure a general reasonability of the thresholds, 
the following comparisons are also necessary: 

 
STcul<Tcu(k)<STcuu, ∀ k=0,1,2,3,...n  (30)  

 
STcll<Tcl(k)<STclu, ∀ k=0,1,2,3,...n   (31)  

 
where STcjj denotes the so called safety thresholds 
and they can be set by using expert knowledge of the 
acceptable signal ranges. 
 
 

3. RESULTS & DISCUSSION 
 
The ATC algorithm is based on the assumption that 
the data is Gaussian distributed containing white 
noise. That is an adequate assumption because most 
of the measurements in the pulp and paper 
manufacturing processes have a normal distribution 
(Cutshall, 1990). In the following results, both 
simulated Gaussian type data and experimental data 
from TMP -process  and paper mill is used.  
 
 
3.1 Simulation case using Gaussian data 
 
In the Fig. 1, Gaussian type data with 60000 points is 
considered and divided into five different regions 
using the ATC algorithm. The middle region denotes 
the normal operation of the measured variable. The 
next     regions    upward     and    downward    denote 

 
 
Fig. 1. Classified Gaussian type data. 
 
‘uncertain area’. If the point lies in the highest or in 
the lowest region, it can be considered as an alarm 
signal. 
 
It can be seen from the Fig. 1, that there has been a 
downward slope between the points 500 and 2000. 
Respectively, between the points 2000 and 4000 
upward slope has been simulated. The purpose of the 
slopes has been to test the effects of the drifts in the 
measurements and to test how effectively the ATC 
can be adapted to that situation. It can be seen, that 
the warning limits respond smoothly to the varying 
situations but the alarming limits are too sensitive to 
the drifts. It can be also seen, that the lower alarming 
has reached its safety threshold (0.1) approximately 
between the points 2000 and 2300. Respectively, the 
upper alarming limit has reached its safety threshold 
(0.9) approximately between the points 2900 and 
4000. 
 
 
3.2 TMP –plant case 
 
In the next Figs. 2–5, the TMP reject refiner (RR) 
data with 4000 points is classified using ATC –
algorithm. The data has skewed distribution and 
therefore it is not exactly Gaussian type. However, 
the following results show that the ATC is also useful 
if the data is not exactly normally distributed. 
 
In the Fig. 2, the classification result is shown. The 
SC value used in TMP case and with Gaussian data 
has been 100000. In the Fig. 3, the percentual 
proportions of the green subgroup is shown. Initial 
counter value for the green area is 95000 (95 % of 
100000 = 2σ). In the ideal case, the green area 
counter should get values near the initial value. Due 
to two tails normal distribution curve upper and 
lower yellow initial counter values are 2350 in the 
Fig. 4 (2*2350=4700; 3σ-2σ=4,7 % of 100000). 
Respectively upper and lower red initial counter 
values are 150 (2*150=300; >3σ =0.3 % of 100000) 
in the Fig. 5. 
 



     

 
 
Fig. 2. The classification results of the ATC with RR 

data. 
 

 
 
Fig. 3. The green area’s percentual proportion. 
 

 
 
Fig. 4. The yellow area’s percentual proportions. 
 
In the Fig. 2, the trend is moving downward as well 
as the thresholds. Thus the system remains sensible 
to process faults. 
 
It can be seen from the Figs. 3-5, that the counter 
values stay fairly close to the initial values. After the 
point    3300   the   lower   yellow    area   counter   is  

 
 

Fig. 5. The red area’s percentual proportions. 
 
increasing and the green area counter is decreasing 
strongly due to downward shift in the trend values. 
The same readjustment can be seen from the lower 
warning threshold in the Fig. 2. 
 
 
3.2 Paper machine performance monitoring 
 
This section describes experiences of using ATC 
with hierarchical monitoring methods that are 
capable to refine subprocess performance data into 
overall process status information. ATC was applied 
to implement adaptive limits for the index calculation 
and scaling. 
 
The basis of the methodology is in hierarchical 
division of the plant into controllable subparts: 
process, subprocess, function and unit. This divis ion 
follows the practical needs in process monitoring and 
control environment. Process disturbances are easier 
to diagnose when there are distinct areas to explore 
and as a consequence, recovery actions can be 
reached fast. In the unit level, several calculation and 
scaling methods were applied. They contain, for 
example , operations to input control, output standard 
deviation, rate of change, absolute and relative 
deviations to the calculation machinery following the 
hierarchical structure. Unit level indices are 
aggregated to their corresponding function node by 
taking the maximum of their absolute value. Function 
level values are averaged to their top level 
subprocesses. The same principle is adopted in the 
process level calculation. Top level process node can 
serve as input to other higher level monitoring 
systems. All calculations, beginning from unit level 
are performed in a normalised scale. 
 
In this case, a prototype monitoring system for a SC 
paper machine at UPM-Kymmene Kajaani Mills in 
Finland was developed. The prototype application 
was designed and implemented by following 
client/server architechtual basis. The system contains 
a backend database and a Graphic User Interface. A 



     

more detailed description of the system can be found 
in Kivikunnas et al. (2002). 
 
During the testing of the basic performance 
monitoring system, a need for adaptability to slow 
changes in the process was identified. Add-on 
functionality was specified to the performance 
monitoring tool. Scaling limits should be calculated 
so that the majority of values fall into the specified 
range without loosing the ability to detect significant 
process performance changes. This somewhat vague 
requirement was met by using ATC and strongly 
tuning the system parameters by following the 
guidelines described in section 2. The actual 
implementation was done with the same design 
principles and tools as the basic performance 
monitoring system. 
 
Two parallel performance monitoring calculation 
systems were implemented: one without adaptivity 
and another one with ATC-properties. These were 
run for a six month test and gradual development 
period. Tests indicated that the intended 
functionality, adaptability to slow changes, was 
mainly obtained but the price for it at this stage of 
development was an extensive amount of tuning 
work. Main findings of this case can be summarised 
as follows: 
 
• In a large-scale system, the tuning of the 

parameters of the classifier is a time -consuming 
exercise. Especially the settling time is difficult 
to control and needs deeper analytical approach 
before practical implementations. A tuning and 
configuration tool with tuning related knowledge 
management capabilities could boost its 
exploitation. 

• During the project ATC proved to be very useful 
in defining fixed limits for performance value 
calculations. It rapidly indicated bad initial limits 
and errors in the calculation parameters. This 
finding generated an idea of using ATC with 
batch history data for preliminary threshold 
setting. The time schedule of the project 
however did not make possible the 
implementation of a test system and validation 
of the idea. 

 
 

4. CONCLUSIONS 
 

The ATC algorithm for threshold calculation and 
adaptation were developed. At first, the algorithm 
was tested using simulated Gaussian data to ensure 
its statistical properties. Secondly, two full-scale 
industrial applications were presented and discussed. 
 
According to the applications, the ATC algorithm 
was proofed to be both practical and useful. It can be 
used as an on-line or off-line tuner of the signal 
thresholds. In the first case, the applicable rate of 

adaptation asks more workload, but because of the 
clear nature of the parameters of the algorithm it is 
however straightforward and easy to understand. For 
defining only the best constant values of thresholds 
(the case of off-line tuning), the presented ATC 
algorithm was even more simple and effortless to 
use. 
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