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Abstract: In this paper, a friction model is proposed which can easily be introduced
in adaptive control algorithms. Based on the model, a robust adaptive friction
compensation algorithm is developed for high precision positioning systems.
It is shown that the proposed compensation scheme guarantees a prescribed
accuracy for trajectory tracking. The paper also presents experimental results to
demonstrate the applicability of the proposed control algorithm. Copyright c©2005
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1. INTRODUCTION

Friction is universally present in the motion of
bodies in contact. In servo controlled machines
friction has an impact in all regimes of opera-
tion. In high precision positioning systems it is
inevitable to know the value of the friction force
to assure good control characteristics and to avoid
some undesired effects such as limit cycle and
steady state error.

Many models were developed to explain the fric-
tion phenomenon. The introduced models are
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based on experimental results rather than analyt-
ical deductions. Tribological experiments showed
that in the case of lubricated contacts the well-
known static + kinetic + viscus friction model
cannot explain some phenomena in low velocity
regime, such as Striebeck effect (decreasing fric-
tion force with increasing velocities at low ve-
locity regime), presliding displacement, friction
lag (Armstrong-Hèlouvry, 1991). To explain these
phenomena dynamic friction models were devel-
oped, such as the LuGre model (de Wit et al.,
1995). The contact of two rigid bodies is modelled
as a set of elastic bristles. When a tangential force
is applied, the bristles deflect like springs which
gives rise to the friction. If the force is sufficiently
large some of the bristles deflect so much that they
will slip. Note the average deflection of the bristles
with z and consider that its dynamics is modelled
by:



dz

dt
= v − σ0

|v|

g(v)
z (1)

v denotes the relative velocity between the two
surfaces in contact, σ0 is a constant parameter
representing the stiffness, the function g(v) is a
positive continuous function which is meant to
describe the Striebeck effect. It can be defined
as an exponential function of velocity : g(v) =
(FC + (FS − FC)e−|v|/vS ) where FC represents
the Coulombic friction term, FS the static friction
term, vS is the Striebeck velocity.

The friction force generated from the bending of
the bristles and from the viscous lubrication is
described as:

Ff = σ0z + σ1
dz

dt
+ FV v (2)

where FV is the viscous friction coefficien and σ1

is a damping coefficient.

The relations (1), (2) give the LuGre dynamic
friction model. It was shown that if the function
g(v) is positive and bounded and the initial value
of z is bounded, the dynamic state z remains
bounded for any time instant (de Wit et al., 1995).

In steady state (dz/dt = 0) the LuGre model
can be written as a static mapping between the
velocity and friction force (Tustin friction model):

Ff = g(v)sign(v) + FV v =

(FC + (FS − FC)e−|v|/vS )sign(v) + FV v (3)

In order to compensate the effect of the friction
generally a feedforward term is introduced in the
structure of the controller, which aim is the can-
cellation of the effect of friction force. In previous
works that dealt with friction compensation, two
trends can be separated: model-oriented friction
compensation techniques and friction modelling
using soft computing methods. Being a nonlin-
ear mapping between the velocity and friction
force, many papers try to model the friction phe-
nomenon using universal approximators such as
neural networks or fuzzy systems. Using feedfor-
ward type neural networks, a direct compensa-
tion of the friction force was proposed in (Kim
and Lewis, 2000) for servo-systems with unknown
dynamics. In (Du and Nair, 1999) the friction is
modelled using RBF type networks. In (Garagic
and Srinivasah, 2004) the nonlinear part of the
friction model (3) is compensated using fuzzy sys-
tem.

The model based friction compensation methods
generally use the LuGre friction model. Both the
states and the parameters of that type of dynamic
models are unknown, moreover the parameters
of the model are time varying. This is why the

tractability and the direct usage of this model
in the control algorithms are difficult. However,
adaptive estimation of some parameters of the
model and nonlinear state estimation techniques
for the state (z) of this model were reported
(Vedagarbha et al., 1999). A comparative study of
different compensation techniques was presented
in (Ray et al., 2001). Robust adaptive control
techniques (Ioannou and Xu, 2001) are also very
popular for friction compensation. Early results
were presented in (Lee and Kim, 1995) using
static friction model. Robust adaptive compensa-
tion of the dynamic friction effects were reported
in (Misovec and Annaswamy, 1998) for positioning
systems and in (Panteley et al., 1998) for robotic
arms.

2. FRICTION MODEL FOR ADAPTIVE
COMPENSATION

The parameters of the friction model may change
as a function of normal forces in contact, temper-
ature variations, humidity, lubricant conditions,
material proprieties and other factors that can
hardly be controlled (Armstrong-Hèlouvry, 1991).
This is why the parameters of the friction models
should be considered as time varying and that
adaptive control techniques using on-line param-
eter estimation methods are popular for friction
compensation.

To apply the well known adaptive control schemes
for friction compensation it is desirable that the
friction force could be written in a linearly param-
eterized form, namely as a scalar product between
a known regressor vector ξ

F
(v) and an unknown

parameter vector θF (Ff = θT
F ξ

F
(v)).

In the other hand the friction parameters could
change even in the function of the sign of velocity.
Hence it is recommended to use different friction
parameters in the positive and negative velocity
regimes.

The previously introduced friction models should
be rewritten or modified in order to obtain the
previously presented requirements (linear param-
eterization, different parameters sets for positive
and negative velocities) and in the same time to
keep the qualitative characteristics of the original
models. The model introduced in this paper, was
developed based on Tustin model (3) and the
dynamic behavior will be incorporated later on.

Recent works suggest that the piecewise contin-
uous nonlinear functions can be approximated
using linearly parameterized models, in which
the regressor is discontinuous (Selmic and Lewis,
2002). The friction force always has discontinuous
behaviour when crosses through v = 0 velocity. In
order to introduce this discontinuity in the friction



model, define the following switching function:

µ(v) =

{
1 if v ≥ 0
0 otherwise

For the simplicity only the positive velocity do-
main is considered, but similar study can be made
for negative velocities. Let us consider that the
mechanical system moves in 0 . . . vmax velocity
domain. The model (3) is approximated using two
lines: d1+

which crosses through the (0, Ff (0))
point and it is tangent to curve and d2+

which
passes through the (vmax, Ff (vmax)) point and
tangential to curve. These two lines meet each
other at a vsw+ velocity. In the domain 0 . . . vsw+

the d1+
can be used for the linearization of the

curve and d2+
is used in the domain vsw+ . . . vmax.

The maximum approximation error occurs at the
velocity vsw+ for both linearizations. The equa-
tions for d1+

and d2+
, using Taylor expansion, are:

d1+
: FL1f+

(v) = FS +
∂Ff (0)

∂v
v

= FS + (FV − (FS − FC)/vS)v (4)

d2+
: FL2f+

(v) = Ff (vmax) +
∂Ff (vmax)

∂v
(v − vmax)

= Ff (vmax) +

(FV − (FS − FC)/vS)e−vmax/vS (v − vmax) (5)

Thus the linearization of the Tustin friction model
in the 0 . . . vmax velocity domain can be realized
using two lines:

FL1f+
(v) = a1+ + b1+v, if 0 ≤ v ≤ vsw+ (6)

FL2f+
(v) = a2+ + b2+v, if vsw+ < v ≤ vmax

Now consider two exponential membership func-
tions parameterized in the following way:

φ1+
(v) = (e−β(v−vsw+))/(1 + e−β(v−vsw+))

φ2+
(v) = 1/(1 + e−β(v−vsw+)) (7)

where β is a large positive constant and vsw+

is the switching velocity, where d1+
and d2+

meet each other. The value of vsw+ can eas-
ily be determined from linearization (6) vsw+ =
(a1+ − a2+)/(b2+ − b1+).

By applying the FL1f+
from (6) on the member-

ship function φ1+ from (7) and FL2f+
on φ2+ a

new model can be obtained that has the same
behaviour as the Tustin friction model. Moreover
it is linearly parameterized if the parameters of
the lines are considered. For the positive velocity
domain it can be written as:

Ff+
(v) = a1+φ1+

(v)µ(v) + b1+vφ1+
(v)µ(v)

+a2+φ2+
(v)µ(v) + b2+vφ2+

(v)µ(v) (8)

With same train of thoughts a similar model can
be determined for the negative velocity domain.
Combining the negative and positive velocity do-
mains the obtained friction model reads as:

Ff (v) = θT
f ξ

f
(v), where : (9)

θf = (a1+ b1+ a2+ b2+ a1− b1− a2− b2−)T

ξ
f
(v) = (φ1+

µ(v) vφ1+
µ(v) φ2+

µ(v) vφ2+
µ(v)

φ1
−

µ(−v) vφ1
−

µ(−v) φ2
−

µ(−v) vφ2
−

µ(−v))T

For some applications it is important to determine
the magnitude of the modelling error due to
dynamic behaviour of friction. Denote the steady
state value of z with zss. It can be expressed
as: zss = g(v)sign(v)/σ0. Since z is bounded the
expression z−zss is also bounded. From (2) yields:

Ff = σ0zss + σ0(z − zss) + σ1dz/dt + FV v

= g(v)sign(v) + FV v +

+σ0(z − zss) +

(
σ1sign(v) +

σ0σ1z

g(v)

)
|v| (10)

In the relation (10) the term g(v)sign(v) + FV v
is the static Tustin friction model and the rest of
the expression represents the dynamic behaviour
of the friction.

The bound of the modelling error can be deter-
mined as it follows: since z, zss, g(v) are bounded,
there exist two positive constants aD , bD satisfy-
ing:

∣∣∣∣σ0(z − zss) +

(
σ1sign(v) +

σ0σ1z

g(v)

)
|v|

∣∣∣∣ ≤

≤ aD + bD|v|(11)

As it was mentioned before, the friction models
could have separate parameters for negative and
positive velocities. The parameters aD and bD

could also be defined separately for positive and
negative velocity regimes.

Consequently, the friction can be modelled by:

Ff = θT
f ξ

f
(v) + FD(v), |FD(v)| ≤ θT

fDξ
fD

(v) (12)

The static term θT
f ξ

f
(v) is defined in (9). The

bound of the dynamic term is defined as follows:

|FD(v)| ≤ θT
fDξ

fD
(v) (13)

where θfD = (aD+ bD+ aD− bD−)T

ξfD(v) = (µ(v) µ(v)|v| µ(−v) µ(−v)|v|)T

The friction can be modelled as a sum of a static
friction model and a dynamic term. The static



term can be written in a linearly parameterized
form. The regressor vector contains a discontinu-
ous switching function which aim is to distinguish
the positive and negative velocity regimes. The
dynamic term is always bounded. Its bound can
also be written in a linearly parameterized form
with discontinuous regressor vector.

3. FRICTION COMPENSATION

To illustrate the applicability of the previously
presented friction model for adaptive compensa-
tion a positioning system is considered driven by
direct current (DC) servo motor. The dynamics of
the system reads as:

α̇ = ω; Jω̇ + Ff (ω) = τ + d (14)

α denotes the angular position, ω denotes the
angular speed, τ is the command torque. The
parameter J > 0 denotes the inertia and is also
considered unknown. The friction term Ff (ω) is
given by (12). In the friction model the angular
velocity ω is used instead of v .

The term d represents a small bounded additive
disturbance which incorporates external distur-
bances and unmodelled dynamics (|d| ≤ dM ).

Note that the parameters wsw and β which are
incorporated in the regressor vectors should be de-
termined a-priori. It is assumed that the variation
of these parameters causes only small bounded
modelling errors, which can be incorporated in d.

Define the tracking error e(t) = αd(t) − α(t) and
the tracking error metric S(t) = ( d

dt + λ)e(t) with
λ > 0. Here αd is the prescribed trajectory, a
smooth, twice differentiable function in time.

The control problem can be formulated as follows:
design a control law τ so that the tracking error
metric S(t) satisfies |S(t)| < Φ for t → ∞ where
Φ > 0 is the given precision.

In order to obtain a control law which satisfies
this requirement, define S∆ as S∆(t) = S(t) −
sat(S(t)/Φ) where sat(·) denotes the saturation
function. The following proprieties can easily be
verified:

Ṡ∆ = Ṡ, if |S| > Φ; Ṡ∆ = 0 otherwise (15)

|S∆| = |S| − Φ = S∆sat(S/Φ), if |S| > Φ (16)

The parameters θf , θfD, J are considered un-
known, consequently the control law can be de-
veloped using estimated parameters. Denote the
estimation errors and the estimated parameters as
follows: θ̃f = θf−θ̂f , θ̃fD = θfD−θ̂fD, J̃ = J−Ĵ .

To solve the proposed control problem, let us
define the following control law:

τ = Ĵ(α̈d + λė(t)) + θ̂f ξ
f
(ω) + kSS +

+F̂Dsat(S/Φ)) (17)

with kS > 0 and F̂D(ω) = θ̂
T

fDξ
fD

(ω). Assume

that:

kS ≥ dM/Φ (18)

The values of the friction and inertial parameters
can be obtained using adaptive techniques. The
adaptation rules are defined as follows:

˙̂
θf = −S∆(t)Γf ξ

f
(ω)

˙̂
θfD = − |S∆(t)|ΓfDξ

fD
(ω) (19)

˙̂
J = −S∆(t)γJ (α̈d + λė(t))

with Γf , ΓfD positive definite diagonal matrices
and γJ > 0.

To examine the behaviour of the closed loop
system consider the following Lyapunov like cost
function:

V (t) = JS∆(t)2 +
1

γJ
J̃2 + θ̃

T

f Γ−1
f θ̃f + θ̃

T

fDΓ−1
fD θ̃fD(20)

The time derivative of V (t) is given by:

V̇ (t) = JṠ∆(t)S∆(t) −
1

γJ
J̃

˙̂
J − θ̃

T

f Γ−1
f

˙̂
θf −

−θ̃
T

fDΓ−1
fD

˙̂
θfD(21)

Due to the definition of S∆ and the adaptation
laws (19), V̇ (t) = 0 for |S(t)| ≤ Φ.

Outside the boundary layer Φ the tracking error
dynamics can be written as:

JṠ∆(t) = JṠ(t) = J(α̈d + λė(t)) + Ff − τ − d

= J̃(α̈d + λė(t)) + θ̃
T

f ξ
f
(ω) − kSS(t) +

+ FD − θ̂
T

fDξ
fD

(ω)sat(S/Φ) − d (22)

By substituting (22) and the adaptation laws (19)
into (21), yields:

V̇ (t) = −kSS∆(t)S(t) − dS∆(t) + FDS∆(t) −(23)

−θ̂
T

fDξ
fD

(ω)sat(S/Φ)S∆(t) − θ̂
T

fDξ
fD

(ω) |S∆(t)|

According to (13), FDS∆(t) ≤ |FD ||S∆(t)| ≤
θT

fDξfD |S∆|. Using this inequality and the pro-
priety (16) the time derivative of the Lyapunov
function simplifies:

V̇ (t) ≤ −kSS∆(t)S(t) − dS∆(t) (24)

Outside the boundary layer (Φ) sign(S) =
sign(S∆), hence SS∆ = |S| |S∆|. Because the



disturbance d is bounded |d| ≤ dM the following
relation holds: −dS∆(t) ≤ dM |S∆(t)|. Using the
propriety (16), it results:

V̇ (t) ≤ −kS |S∆(t)| |S∆(t)| + (−kSΦ + dM ) |S∆(t)|

(25)

According to assumption (18) the second term in
the inequality (25) is always negative. Hence, it
yields:

V̇ (t) ≤ −kSS∆(t)2 (26)

Notice that (26) is also valid for |S(t)| ≤ Φ.

Since V (t) is a positive and non-increasing func-
tion, therefore V (∞) is finite. It is assumed that
the initial values of the estimated parameters and
the initial value of the tracking error metric are

finite. Thus, if S∆(0), J̃(0), θ̃fD(0) and θ̃f (0) are

finite ⇒ S∆(t), J̃(t), θ̃fD(t) and θ̃f (t) ∈ L∞ ∀
t > 0. Since S∆(t) ∈ L∞, it implies that
S(t) ∈ L∞

If S∆(t) ∈ L∞, e(0) and ė(0) are finite ⇒ e(t) and
ė(t) ∈ L∞.

If e(t), ė(t), αd(t) and ωd(t) ∈ L∞ ⇒ α(t) and
ω(t) ∈ L∞.

From:

∞∫

0

S∆(t)2dt ≤
−1

kS

∞∫

0

V̇ (t) =
V (0) − V (∞)

kS
< ∞(27)

it follows that S∆(t) ∈ L2.

Since the elements of the parameter θfD are finite

and θ̃fD(t) ∈ L∞ ⇒ θ̂fD(t) ∈ L∞.

From (22) results that if S(t), J̃(t), α̈d(t), ė(t),

θ̃f (t), FD, θ̂fD, ω(t), d(t) ∈ L∞ ⇒ Ṡ∆(t) ∈ L∞.

Because S∆(t) and Ṡ∆(t) ∈ L∞ and the relation
(27) holds, by Barbalat’s lemma S∆(t) → 0 when
t → ∞, consequently the inequality |S(t)| ≤
Φ is obtained asymptotically. Thus the control
law (17) with the adaptation law (19) solve the
formulated control problem.

4. EXPERIMENTAL RESULTS

In this section the effectiveness of the proposed
control scheme is illustrated by an experiment us-
ing a 1 DOF positioning system. The performance
of the proposed scheme is compared with that of
a PID controller.

The experimental setup consists of a permanent
magnet 24V DC servo motor, which drives a metal
disc with known inertia (J = 0.015 kgm2) through

a 1 : 66 gearhead. Friction is introduced via a
metal surface, which is held against the disc (see
Fig. 2). The contact between the disc and the
metal surface is lubricated with grease. The con-
trol algorithm is implemented on a PIC-18 type
microcontroller which C compiler allows floating
point representation. The Euler’s approximation
is used for the integration with a sampling pe-
riod of 5 ms. The angular position and velocity
of the mechanical system are measured using a
5000 PPT rotational encoder. The impulses of
the encoder are counted using the embedded 16
bit timers of the controller. The microcontroller is
interfaced to the current servo amplifier through
a 11 bit DAC.

The reference trajectory was chosen in such way to
have acceleration, deceleration and constant speed
regimes for both positive and negative velocity do-
main. The algorithm was tested in ±0.5 [rad/sec]
velocity domain. The duration of an acceleration-
constant speed-deceleration cycle was 5 [sec]. For
the controller, the following parameters were cho-
sen: Φ = 0.25, λ = 10, KS = 40, dM = 10.

The adaptation of the parameters determining the
behavior of friction force for the positive velocity
domain are presented in Fig. 3. It can be observed
that the parameters are tuned only when the
plant is in the corresponding velocity regime. The
performance of the control algorithm is compared
with the response of a well tuned PID controller.
As it can be seen in Fig. 1 the robust adaptive
control law guarantees the convergence inside the
boundary layer Φ and after the convergence the
error metric is smaller than in the case of PID
controller.

For the numerical evaluation of the control per-
formances, the average of the absolute values of
the tracking error metrics (SA = 1

N

∑N
i=1 |S|) was

calculated during the first N = 250 sampling
periods for the PID controller and the adaptive
friction compensator controller. It was found that
these controllers guarantees same performances
(SA(PID) = 0.2449, SA(adapt) = 0.2487). It
is because the parameters are not adapted yet
and the the adaptive controller does not work
properly. However in the second 250 sampling
period, when the adaptive laws already tuned the
parameters the adaptive controller clearly over-
performs the PID controller (SA(PID) = 0.2573,
SA(adapt) = 0.1106).

5. CONCLUSIONS

The use of a novel friction model in adaptive
trajectory tracking control for positioning systems
is explored in this paper. The model incorporates
both the Striebeck effect and dynamic frictional
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Fig. 1. Tracking error metric (S)
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Fig. 2. Experimental apparatus for friction com-
pensation

behaviour and it can easily be incorporated in
adaptive control algorithms. Using the model a ro-
bust adaptive control law was developed for posi-
tioning systems. The behaviour of the closed loop
system with the proposed control algorithm is
studied using Lyapunov techniques. It was shown
that the algorithm which incorporates the intro-
duced friction model guarantees that the tracking
error remains bounded with known bound even
in the presence of bounded external disturbances
and modelling errors. Experimental results also
were presented to illustrate the effectiveness of
the control algorithm. To implement the algo-
rithm, a microcontroller based architecture was
used. Experimental results show good convergence
proprieties of the tracking error metric.
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