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Abstract: This paper addresses the robust H∞ issue of uncertain Markovian jump
linear systems (MJLSs) with mode-dependent time-delays. A new delay-dependent
condition on the stochastic stability is proposed by a new stochastic Lyapunov-
Krasovskii functional. The stability conditions are formulated as bilinear matrix
inequalities solvable by an iterative linear matrix inequality (LMI) method. Then
a new robust H∞ feedback controller is developed by solving a set of coupled
LMIs. A simple numerical example demonstrates the effectiveness of the proposed
method. Copyright c© 2005 IFAC
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1. INTRODUCTION

Markovian jump linear system (MJLS), intro-
duced by Krasovskii and Lidskii in (Krasovskii
and Lidskii, 1961), is a class of stochastic linear
systems subject to abrupt variations governed by
a Markov process. The family of systems repre-
sents a large variety of processes, including fault-
tolerant flight control systems, sudden changes
in economic systems, see for instance (Mariton,
1990). Great developments involving the opti-
mal regulator, controllability, observability, stabil-
ity and stabilization problems have been exten-
sively studied, see for example (Ji and Chizeck,
1990; Costa and Fragoso, 1995; Benjelloun and
Boukas, 1998; Cao and Lam, 2000; Boukas and
Liu, 2001) and the references therein.

On the other hand, time-delays and parameter
uncertainties which are inherent features of many
physical processes, are main resources of per-
formance deterioration and even instability. For

MJLSs with time-delay, the issues of stability and
H∞ control have been well investigated, see e.g.
(Cao and Lam, 2000). However, the above-cited
results were obtained under the assumption that
the time-delay is constant for all modes. In many
engineering applications, random delays are un-
avoidably encountered. It is noted that a random
delay can be modelled by a Markov process with
a finite number of states. The H∞ control issue of
discrete-time MJLSs with mode-dependent time-
delays was proposed in (Boukas and Liu, 2001).

In this paper, we address the robust stochastic
stabilizability and robust H∞ disturbance atten-
uation for continuous-time MJLSs with mode-
dependent delays by a new stochastic Lyapunov-
Krosovskii functional approach. A new delay-
dependent stochastic stability condition will be
derived by introducing a special equality which in-
volves the state, delayed state and delay-distributed
derivative variables of the state with free weight-
ing matrices. The organization of this paper is as



follows. In Section 2, definitions and preliminary
results are described for uncertain jump systems
with mode-dependent time-delays. Sufficient con-
ditions on stochastic stability and the H∞ dis-
turbance attenuation problem are developed in
Section 3 and 4 by a new Lyapunov-Krasovskii
functional involving the differential variable of
the state. The state feedback controller is also
developed by the LMI optimization method. An
illustrative example is presented in Section 5 to
show the effectiveness of the result. The paper is
concluded in Section 6.

2. PROBLEM STATEMENT

In what follows, if not explicitly stated, matrices
are assumed to have compatible dimensions. The
notation A > (<)0 is used to denote a positive
(negative )-positive matrix. λmin(·) and λmax(·)
denote the minimum and maximum eigenvalue
of the corresponding matrix respectively. ‖ · ‖
denotes the Euclidean norm for vectors or the
spectral norms of matrices. E[·] stands for the
mathematical expectation. sym{A} is used to
denote the expression A + AT .

rt is a finite state Markov jump process repre-
senting the system mode, that is, rt takes discrete
values in a given finite set S = {1, 2, · · · , s}. Let
Π = [πij ]i,j∈S denote the transition rate matrix
with

Pr{rt+∆ = j|rt = i} =

{

πij∆ + o(∆), i 6= j,

1 + πii∆ + o(∆), i = j.

(1)
where ∆ > 0, πij ≥ 0 for i 6= j, with

s
∑

j=1,j 6=i

πij = −πii, (2)

for each mode i ∈ S, and o(∆)
∆ → 0 as ∆ → 0.

Consider the class of jump linear system with
mode-dependent time-delays in a fixed complete
probability space (Ω,F , P ):

ẋt = A1(rt, t)xt + A2(rt, t)xt−τ(rt)

+ B1(rt)wt + B2(rt, t)ut, (3)

zt = C1(rt, t)xt + C2(rt, t)xt−τ(rt)

+ D1(rt)wt + D2(rt, t)ut, (4)

xt = φt, t ∈
[

−τ, 0
]

, r(0) = r0. (5)

where x, u, z is the state, control and controller
output of the system with appropriate dimensions,
w is the exogenous disturbance which belongs
to L2[0,∞], r0 ∈ S are the initial conditions of
the mode,φ(t) is a smooth vector-valued initial
function defined in the Banach space C[−τ, 0] of
smooth functions

φ : [−τ, 0] 7→ Rn,with ‖φ‖∞ := sup
−τ≤η≤0

‖φ(η)‖.

For each i ∈ S

A1(rt, t) = A1(rt) + ∆1(rt, t),

A2(rt, t) = A2(rt) + ∆2(rt, t),

B2(rt, t) = B2(rt) + ∆3(rt, t),

C1(rt, t) = C1(rt) + ∆4(rt, t),

C2(rt, t) = C2(rt) + ∆5(rt, t),

D2(rt, t) = D2(rt) + ∆6(rt, t),

with A1(rt), A2(rt), B2(rt), C1(rt), C2(rt) and
D2(rt) are matrix functions of the random jump-
ing process {rt} with appropriate dimensions,
∆j(rt, t) (j = 1, · · · , 6) are unknown matrices
denoting the uncertainties in the system. τ(rt)
is a constant time-delay when the system is in
mode rt and satisfies 0 < τ ≤ τ(rt) ≤ τ , where
τ = min{τ(rt), rt ∈ S}, τ = max{τ(rt), rt ∈ S}.
For the notational simplicity, when the system
operates in the mode rt = i ∈ S, we will denote
⋆(rt) as ⋆i, where ⋆ is any matrix. For instance,
A(rt) is denoted as Ai.

Furthermore, we assume that the admissible un-
certainties satisfy the following:

[

∆1i ∆2i ∆3i

∆4i ∆5i ∆6i

]

=

[

F1i

F2i

]

∆i

[

G1i G2i G3i

]

,

with ∆T
i ∆i ≤ I,∀i ∈ S.

The definitions of stochastic stability and H∞

disturbance attenuation performance of the jump
linear system with u(t) ≡ 0 are similar to defi-
nitions in (Cao and Lam, 2000). The details are
omitted here for the limit of pages.

3. ROBUST STATE FEEDBACK
STABILIZATION

In this section, we will establish a delay-dependent
sufficient stability condition for MJLSs with
mode-dependent time-delays with wt ≡ 0 by ap-
plying a new Lyapunov-Krasovskii functional.

Theorem 1. The autonomous jump time-delay
system is robust stochastically stable for τ ≤ τi ≤
τ , for each mode i ∈ S, if there exists a scalar
εi > 0 and matrices Pi > 0, Q1 > 0, Q2 >

0, Ti =
[

T1i T2i T3i

]

, Hi, Ni satisfying the
following matrix inequalities

[

Θi + εiT
T
i F1iF

T
1iTi GT

i

∗ −εiI

]

< 0, (6)

[

Hi Ni

∗ Q2

]

≥ 0, (7)

where the ∗ represent block that is readily inferred
by symmetry and

Θi = Mi + sym{TT
i Ai} + sym{NiΓ1} + τiHi,



Mi =











s
∑

j=1

πijPj + µQ1 0 Pi

∗ −Q1 0
∗ ∗ ̺iQ2











,

Ai =
[

A1i A2i −I
]

, Γ1 =
[

I −I 0
]

,

µ = 1 + (τ − τ)πm, ̺i = τi +
πm

2
(τ2 − τ2),

πm = max{|πii|, i ∈ S}, Gi =
[

G1i G2i 0
]

.

Proof. Let the mode at time t be i, that is
rt = i ∈ S. Then the autonomous jump time-
delay system is

{

ẋt = A1(i, t)xt + A2(i, t)xt−τi
,

xt = φt, t ∈
[

−τ, 0
]

, r(0) = r0.
(8)

Since xt is continuously differentiable for t ≥
0, Leibnitz-Newton formula gives xt−τi

= xt −
∫ t

t−τi
ẋαdα. From (8), we have

0 = [A1(i, t)+A2(i, t)]xt−ẋt−A2(i, t)

∫ t

t−τi

ẋαdα.

In the sequel, we will use the following notations

Asi = A1(i, t) + A2(i, t), yτi
=

∫ t

t−τi

ẋαdα,

ξt =
[

xT
t xT

t−τi
ẋT

t

]T
.

So, we have

2ξT
t TT

i (Asixt − ẋt − A2(i, t)yτi
) = 0. (9)

Choose the Lyapunov-Krasovskii functional can-
didate as

V (xt, i) ,

4
∑

j=1

Vj(xt, i), (10)

where

V1(xt, i) , xT
t Pixt,

V2(xt, i) ,

∫ t

t−τi

xT
αQ1xαdα,

V3(xt, i) ,

∫ 0

−τi

∫ t

t+β

ẋT
αQ2ẋαdαdβ,

V4(xt, i) , πm

∫ −τ

−τ

∫ t

t+β

{

xT
αQ1xα

+ẋT
αQ2ẋα(α − t − β)

}

dαdβ.

The weak infinitesimal operator A of the stochas-
tic process {rt, xt}, t ≥ 0, is given by

AV (xt, i) = lim
∆→0

1

∆
[E{V (xt+∆, rt+∆)|xt, rt}

− V (xt, rt)]. (11)

By (9), we have

AV1(xt, i) = 2xT
t Piẋt + xT

t (
s

∑

j=1

πijPj)xt

= 2xT
t Piẋt + xT

t (

s
∑

j=1

πijPj)xt

+ 2ξT
t TT

i (Asixt − ẋt − A2(i, t)yτi
)

=ξT
t





























s
∑

j=1

πijPj 0 Pi

∗ 0 0
∗ ∗ 0











+ sym{TT
i Āi}



















× ξt − 2ξT
t TT

i A2(i, t)yτi
, (12)

where Āi =
[

Asi 0 −I
]

.

By the inequality in (Moon et al., 2001), we have

−2ξT
t TT

i A2(i, t)yτi

≤ τiξ
T
t Hiξt + 2ξT

t (Ni − TT
i A2(i, t))(xt − xt−τi

)

+

∫ 0

−τi

ẋT
t+αQ2ẋt+αdα, (13)

for any matrices Hi, Ni and Q2 satisfying (7).

Also, we have

AV2(xt, i) = xT
t Q1xt − xT

t−τi
Q1xt−τi

+

s
∑

j=1

πij

∫ t

t−τj

xT
αQ1xαdα. (14)

Notice that (2), we have

s
∑

j=1

πij

∫ t

t−τj

xT
αQ1xαdα

= −πii

{

∫ t

t−τj

xT
αQ1xαdα −

∫ t

t−τi

xT
αQ1xαdα

}

.

Furthermore, we have
∫ t

t−τj

xT
αQ1xαdα =

∫ t−τ

t−τj

xT
αQ1xαdα

+

∫ t

t−τ

xT
αQ1xαdα,

∫ t−τ

t−τj

xT
αQ1xαdα ≤

∫ t−τ

t−τ

xT
αQ1xαdα,

∫ t

t−τ

xT
αQ1xαdα ≤

∫ t

t−τi

xT
αQ1xαdα.

Hence,

AV2(xt, i) ≤ xT
t Q1xt − xT

t−τi
Q1xt−τi

+ πm

∫ t−τ

t−τ

xT
αQ1xαdα. (15)

Similarly

AV3(xt, i) ≤ τiẋ
T
t Q2ẋt −

∫ t

t−τi

ẋT
αQ2ẋαdα

+ πm

∫ −τ

−τ

dβ

∫ t

t+β

ẋT
αQ2ẋαdα. (16)

Also,

AV4(xt, i) =
πm

2
(τ2 − τ2)ẋT

t Q2ẋt

− πm

∫ −τ

−τ

dβ

∫ t

t+β

ẋT
αQ2ẋαdα

+ πm(τ − τ)xT
t Q1xt



− πm

∫ t−τ

t−τ

xT
αQ1xαdα. (17)

Combining (12)-(17), we have

AV (xt, i) ≤ ξT
t (Θi + sym{TT

i F1i∆iGi})ξt.

By (Wang et al., 1992) and using Schur comple-
ment, it is easy to see that AV (xt, i) < 0 if LMI
(6) holds.

Hence we have AV (xt, i) ≤ −β1ξ
T
t ξt, where β1 =

mini∈S(λmin(−(Θi+εiT
T
i F1iF

T
1iTi+ε−1

i GT
i Gi))) >

0. By Dynkin’s formula, we have

E{V (xt, i)} − V (φ, r0)

= E

{
∫ t

0

AV (xα, rα)dα

}

≤ −β1

∫ t

0

E
{

ξT
α ξαdα

}

. (18)

On the other hand, we can show that

E {V (xt, i)} ≥ β2E
{

ξT
t ξt

}

, (19)

where β2 = mini∈S(λmin(Pi)) > 0.

From (18) and (19), we have

E{ξT
t ξt} ≤ λ1 exp(−λ2t)V (φ, r0),

where λ1 = β1β
−1
2 , λ2 = β−1

2 . Therefore,

E

{
∫ t

0

ξT
α ξαdα|φ, r0

}

≤ λ−1
1 λ2[1 − exp(−λ1t)]V (φ, r0).

Taking limit as t → ∞, we have

lim
t→∞

E

{
∫ t

0

xT
αxαdα|φ, r0

}

≤ lim
t→∞

E

{
∫ t

0

ξT
α ξαdα|φ, r0

}

≤ λ−1
1 λ2V (φ, r0).

Noting that there always exists a scalar c > 0,
such that λ−1

1 λ2V (φ, r0) ≤ c sup−τ≤s≤0 ‖φ(s)‖2,
it then follows that the autonomous jump time-
delay system is stochastically stable. Hence the
theorem holds. �

Remark 1. It’s noted that the above results are
obtained under the assumption that for each mode
i ∈ S, τi is known in advance.

Remark 2. It’s also noted that the condition (6)
is not an LMI but a bilinear matrix inequality
because the term εiTiF1iF

T
1iTi. By Schur comple-

ment, the condition (6) will be converted to a
nonlinear matrix inequality with term ε−1

i I. By
an LMI-based iterative algorithm developed by
(Moon et al., 2001), a feasible solution of (6) and
(7) will be obtained, the details are omitted here.

In this paper, we consider the following state
feedback controller design, for each i ∈ S

ui = K1ixt + K2ixt−τi
. (20)

The above control law is the general formula of
the state feedback. When K2i = 0, it is just the
instantaneous state feedback, while it is the mode-
dependent delayed state feedback when K1i = 0.
It should be noticed that the time-delay in the
control law (20) is assumed to be the same as for
the system (3)-(5).

By Theorem 1, we know that the closed-loop
system is robust stochastically stable for τ ≤ τi ≤
τ , for each mode i ∈ S, if there exists a scalar
εi > 0 and matrices Pi > 0, Q1 > 0, Q2 >

0, Ti, Hi, Ni satisfying (7) and

[

Θ̄i + εiT
T
i F1iF

T
1iTi ḠT

i

∗ −εiI

]

< 0, (21)

where

Θ̄i = Mi + sym{TT
i Āi} + sym{NiΓ1} + τiHi,

Āi =
[

A1i + B2iK1i A2i + B2iK2i −I
]

,

Ḡi =
[

G1i + G3iK1i G2i + G3iK2i 0
]

.

In what follows, we denote S1i = T−1
1i , S2i =

T−1
2i , S3i = T−1

3i . S1i = Xi, S2i = δ1Xi, S3i =
δ2Xi, where δ1, δ2 > 0 are known tuning parame-
ters. Furthermore, Si = diag{Xi, δ1Xi, δ2Xi}, P̂i =
XT

i PiXi, Ĥi = ST
i HiSi, N̂i = ST

i NiXi, Y1i =
K1iXi, Y2i = K2iXi, Γ2 =

[

I I I
]

. Pre-
and post-multiplying diag{ST

i , I}, diag{Si, I}
to (21) respectively. Pre- and post-multiplying
diag{ST

i , δ1X
T
i } and diag{Si, δ1Xi} to (7) re-

spectively. If we constrain Xi to be same for all i

and let Q̂1 = XT
i Q1Xi and Q̂2 = XT

i Q2Xi, the
following theorem is obvious.

Theorem 2. Given tuning parameters δ1, δ2 > 0,
there exists a state feedback controller (20) such
that the uncertain jump time-delay system is
robust stochastically stabilized for all τ ≤ τi ≤ τ ,
for each mode i ∈ S, if there exists a scalar εi > 0
and matrices P̂i > 0, Q̂1 > 0, Q̂2 > 0, X >

0, Ĥi, N̂i and Y1i, Y2i satisfying the following
LMIs

[

Θ̂i + εiΓ
T
2 F1iF

T
1iΓ2 ĜT

i

∗ −εiI

]

< 0, (22)

[

Ĥi δ1N̂i

∗ δ2
1Q̂2

]

≥ 0, (23)

where

Θ̂i = M̂i + sym{ΓT
2 Âi} + sym{N̂iΓ̂1} + τiĤi,

M̂i =











s
∑

j=1

πijP̂j + µQ̂1 0 δ2P̂i

∗ −δ2
1Q̂1 0

∗ ∗ δ2
2̺iQ̂2











,

Âi =
[

A1iX + B2iY1i δ1A2iX + δ1B2iY2i −δ2X
]

,

Ĝi =
[

G1iX + G3iY1i δ1G2iX + δ1G3iY2i 0
]

,

Γ̂1 =
[

I −δ1I 0
]

, Γ2 =
[

I I I
]

.



Then the control law can be constructed as K1i =
Y1iX

−1 and K2i = Y2iX
−1.

However, the above theorem may be too conserva-
tive. In this sequel, we propose a less conservative
theorem by not constraining Xi to be same for all
i ∈ S. Let Q̂1 = Q−1

1 and Q̂2 = Q−1
2 . Also, we

note that

δ2
1XT

i Q̂−1
j Xi ≥ sym{δ1Xi} − Q̂j , j = 1, 2

XT
i P̂−1

i Xi ≥ sym{Xi} − P̂i.

Using the Schur complement, we have the follow-
ing theorem.

Theorem 3. Given tuning parameter δ1, δ2 > 0,
there exists a state feedback controller (20) such
that the uncertain jump time-delay system is
robust stochastically stabilized for all τ ≤ τi ≤ τ ,
for each mode i ∈ S, if there exists a scalar εi > 0
and matrices P̂i > 0, Q̂1 > 0, Q̂2 > 0, Xi >

0, Ĥi, N̂i and Y1i, Y2i satisfying the following
LMIs













Θ̂i + εiΓ
T
2 F1iF

T
1iΓ2 ĜT

i

∗ −εiI

∗ ∗
∗ ∗
∗ ∗
µΠ1X

T
i ̺iΠ2X

T
i Π1Ξi

0 0 0

−µQ̂1 0 0

∗ −̺iQ̂2 0
∗ ∗ −Υi













< 0, (24)

[

Ĥi δ1N̂i

∗ sym{δ1Xi} − Q̂2

]

≥ 0, (25)

where

Θ̂i =M̂i + sym{ΓT
2 Âi} + sym{N̂iΓ̂1} + τiĤi,

M̂i =





πiiP̂i 0 δ2P̂i

∗ −sym{δ1Xi} + Q̂1 0
∗ ∗ 0



 ,

Âi =
[

A1iXi+B2iY1i δ1A2iXi+δ1B2iY2i −δ2Xi

]

,

Ĝi =
[

G1iXi + G3iY1i δ1G2iXi + δ1G3iY2i 0
]

,

Π1 =
[

I 0 0
]T

, Π2 =
[

0 0 δ2I
]T

,

Γ̂1 =
[

I −δ1I 0
]

, Γ2 =
[

I I I
]

,

Ξi =
[√

πi,1Xi · · · √
πi,i−1Xi

√
πi,i+1Xi

· · · √
πi,sXi

]

,

Υi =diag
{

sym{X1}−P̂1 · · ·sym{Xi−1}−P̂i−1

sym{Xi+1} − P̂i+1 · · · sym{Xs} − P̂s

}

.

Then the control law can be constructed as K1i =
Y1iX

−1
i and K2i = Y2iX

−1
i .

4. H∞ DISTURBANCE ATTENUATION
ANALYSIS

In this section, we will analyze the H∞ distur-
bance attenuation performance of the uncertain
jump time-delay systems.

Theorem 4. For the autonomous uncertain jump
time-delay systems and a given disturbance atten-
uation level γ, it is said to be robust stochastically
stable with γ-disturbance attenuation property
for all τ ≤ τi ≤ τ , w ∈ L2[0,∞), w 6= 0, for
each mode i ∈ S, if there exists a scalar εi > 0
and matrices Pi > 0, Q1 > 0, Q2 > 0, Ti =
[

T1i T2i T3i

]

, Hi, Ni satisfying the LMIs (7)
and









Θi + εiT
T
i F1iF

T
1iTi TT

i B1i

∗ −γI

∗ ∗
∗ ∗

CT
i + εiT

T
i F1iF

T
2i GT

i

DT
1i 0

−γI + εiF2iF
T
2i 0

∗ −εiI









< 0, (26)

where Ci =
[

C1i C2i 0
]

.

Proof. Choose the stochastic Lyapunov-Krasovskii
functional candidate V (xt, i) as (10). Replacing
(9) by equation: 2ξT

t TT
i (Asixt − ẋt −A2(i, t)yτi

+
B1iwt) = 0. Similar to the proof of Theorem 1 we
can obtain the theorem, the details are omitted
here for the limit of pages. �

Pre- and post-multiplying diag{ST
i , I, I, I}

and diag{Si, I, I, I} to (26) respectively.
Pre- and post-multiplying diag{ST

i , δ1X
T
i } and

diag{Si, δ1Xi} to (7) respectively. Similar to the
proof of Theorem 3, we have the following theo-
rem.

Theorem 5. Given tuning parameters δ1, δ2 > 0,
there exists a state feedback controller (20) such
that the uncertain jump time-delay systems is
robust stochastically stable with γ-disturbance
attenuation property for all τ ≤ τi ≤ τ , w ∈
L2[0,∞), w 6= 0, for each mode i ∈ S, if there
exist a scalar εi > 0 and matrices P̂i > 0, Q̂1 >

0, Q̂2 > 0, Xi > 0, Ĥi, N̂i and Y1i, Y2i satisfying
the LMIs (25) and





















Θ̂i + εiΓ
T
2 F1iF

T
1iΓ2 ΓT

2 B1i ĈT
i + εiΓ

T
2 F1iF

T
2i

∗ −γI DT
1i

∗ ∗ −γI + εiF2iF
T
2i

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



ĜT
i µΠ1X

T
i ̺iΠ2X

T
i Π1Ξi

0 0 0 0
0 0 0 0

−εiI 0 0 0

∗ −µQ̂1 0 0

∗ ∗ −̺iQ̂2 0
∗ ∗ ∗ −Υi





















< 0,

(27)

where Ĉi=
[

C1iXi + D2iY1i δ1C2iXi + δ1D2iY2i 0
]

.
Then the control law providing γ-disturbance at-
tenuation can be constructed as K1i = Y1iX

−1
i

and K2i = Y2iX
−1
i .

5. ILLUSTRATIVE EXAMPLE

In this section, we present a simple example to
illustrate the usefulness of the proposed method.
We borrow the example with two modes from
(Benjelloun and Boukas, 1998). The nominal dy-
namics in each mode is described as follows

A11 =

[

0.5 −1
0 −3

]

, A21 =

[

0.5 −0.2
0.2 0.3

]

,

A12 =

[

−5 1
1 0.2

]

, A22 =

[

−0.3 0.5
0.4 −0.5

]

,

B21 = B22 =

[

1
0

]

.

The initial condition is assumed to be xt =
[

−1 1
]T

and rt = 1 for t ∈ [−τ, 0]. τ is
assumed to be 0. The generator matrix of the

stochastic process rt is Π =

[

−π1 π1

π2 −π2

]

, where

π1 = 7, π2 = 3. τ1 = 1, τ2 = 0.2. When
δ1 = 10, δ2 = 1, by theorem 2, we can obtain
a feasible solution when τ ≤ 1.648, and hence
the stability of the system is guaranteed when
τ ≤ 1.648. We want to design the control law (20)
such that the closed-loop system is stochastically
stable for the time-delay as large as possible. Let
τ = 1.648, we construct the feedback matrices as

K11 =
[

−71.5046 −37.4365
]

,

K12 =
[

−64.2378 −39.2132
]

,

K21 =
[

−0.4107 0.1669
]

,K22=
[

0.4074 −0.0546
]

.

The simulation also shows that the system is
stable when τ = 1.648. Figure 1 gives the state
and mode trajectories.

6. CONCLUSIONS

In this paper, a new Lyapunov-Krasovskii func-
tional for the stochastic stability analysis and
H∞ control design issues of the uncertain jump
systems with mode-dependent time-delay were
proposed. Sufficient conditions on robust stochas-
tic stability and robust γ-disturbance attenuation

were also presented on coupled LMI’s. A numer-
ical example was presented to illustrate the use-
fulness of the proposed method.
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Fig. 1. Mode and state trajectories of the example.


