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Abstract: We revisit the extremum seeking scheme whose local stability properties
were analyzed in (Krstić and Wang, 2000) and propose its simplified version that
still achieves extremum seeking. We show under slightly stronger conditions that
this simplified scheme achieves extremum seeking from arbitrarily large domain of
initial conditions if the parameters in the controller are appropriately adjusted.
This non-local convergence result is proved by showing semi-global practical
stability of the closed-loop system with respect to the design parameters. Moreover,
we show at the same time that reducing the parameters typically slows down the
convergence of the extremum seeking controller. Hence, the control designer faces a
tradeoff between the size of the domain of attraction and the speed of convergence
when tuning the extremum seeking controller. We present a simulation example
to illustrate our results. Copyright c©2005 IFAC.
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1. INTRODUCTION

In many control applications the reference-to-
output map has an extremum and the control
objective is to regulate the output close to this
extremum. For instance, consider the system:

ẋ = f(x, u); y = h(x)

and suppose that there exists an x∗ such that y∗ =
h(x∗) is an extremum of the mapping h(·). Due
to uncertainty, it is often reasonable to assume
that neither x∗ nor h(·) are known to the control
designer. The main objective in extremum seeking
control is to force the solutions of the closed loop
system to eventually converge to x∗ and to do so
without precise knowledge about x∗ or h(·).

1 This research was supported by the Australia Research
Council under the Discovery Project DP0344784

Extremum seeking control is an old topic that
was popular in 1950’s and 1960’s. It focused on
finding the optimal value of a static mapping and
stability issues were largely ignored (see (Krstić
and Wang, 2000)). It was not until the year
2000 that stability of an extremum seeking feed-
back scheme was proved rigorously in (Krstić and
Wang, 2000). This sparked a new interest in the
area and generated numerous new results and
applications (M. Guay, 2004; Krstić, 2000; Pe-
terson and Stefanopoulou, 2004; H.-H. Wang and
Krstić, 2000; Wang and Krstić, 2000).

The analysis in (Krstić and Wang, 2000) was
based on classical singular perturbations and av-
eraging results and only a local stability result
was proved. In other words, results in (Krstić
and Wang, 2000) do not say anything about the
actual domain of attraction. In most engineering
applications it is very useful to obtain estimates
of the domain of attraction.



The main purpose of this paper is to characterize
non-local stability properties of an extremum seek-
ing controller. In other words, our results include
explicit statements about the achieved domain
of attraction for the closed loop. We show un-
der appropriate conditions that extremum seeking
controller achieves semi-global practical stability
of the closed loop system. In other words, given
an arbitrarily large set of initial conditions B∆

and an arbitrarily small neighborhood Bδ of the
state x∗ where the output achieves its extremum
y∗ = h(x∗), it is possible to adjust the controller
parameters so that all solutions starting from the
set B∆ eventually converge to Bδ. At the same
time we show that reducing the parameters in the
controller typically reduces the speed of conver-
gence of the algorithm and this poses a tradeoff
that the controller designer needs to resolve when
tuning the controller. Note that this is a much
stronger statement than the local result proved
in (Krstić and Wang, 2000). To the best of our
knowledge, this is the first proof of non-local and
semi-global practical stability properties of ex-
tremum seeking controllers with explicit bounds of
convergence speed. Finally, we emphasize that our
proof technique is novel and is based on Lyapunov
techniques and recent new developments in the
theory of averaging (Nešić and Teel, 2001; Teel,
2000; A. R. Teel and Aeyels, 1999) and singular
perturbations (Christofides and Teel, 1996; Teel
et al., 2003) that are tailored for analysis of
semi-global practical stability of systems that ex-
hibit time scale separation. Similar to (Krstić and
Wang, 2000) we show that the closed loop system
with an extremum seeking controller exhibits two
time scales. We consider a simplified extremum
seeking controller from (Krstić and Wang, 2000).
Then, we show how to tune the controller pa-
rameters to achieve semi-global practical stability
of the closed loop. An example is included to
illustrate the design trade-off issues.

2. PRELIMINARIES

The following definition and lemmas are need in
the sequel.

Definition 1. Consider the parameterized family
of systems:

ẋ = f(t,x, ε1, ε2, . . . , ε`) , (1)

where x ∈ Rn and εi ∈ R>0 for all i =
1, 2, . . . , `. The system (1) is said to be semi-
globally practically asymptotically (SPA) stable
in [ε1, ε2, · · · , ε`], if there exists β ∈ KL (Khalil,
2002) such that the following holds: for each pair
of strictly positive real numbers (∆, ν), there ex-
ists ε∗1 > 0 and for any ε1 ∈ (0, ε∗1) there exists

ε∗2 = ε∗2(ε1) > 0 and for any ε2 ∈ (0, ε∗2) there
exists ε∗3 = ε∗3(ε1, ε2) > 0 and for any ε3 ∈ (0, ε∗3)
· · ·, there exists ε∗` (ε1, ε2, . . . , ε`−1) > 0 such that
for any ε` ∈ (0, ε∗` ), the solutions of (1) with the
parameters [ε1, ε2, . . . , ε`] satisfy:

|x(t)| ≤ β(|x0|, (ε1 · ε2 · · · ε`)(t− t0)) + ν, (2)

for all t ≥ t0 ≥ 0, x(t0) = x0 with |x0| ≤ ∆.
Moreover, if under the stated conditions we have
that:

|x(t)| ≤ β(|x0|, (ε1 · ε2 · · · ε`−1)(t− t0)) + ν, (3)

∀t ≥ t0 ≥ 0, then we say that the system (1) is
SPA stable in [ε1, ε2, . . . , ε`], uniformly in ε`.

Remark 1: Definition 1 is not the standard defi-
nition of semi-global practical stability. First, the
definition is stated for systems with multiple pa-
rameters ε1 · ε2 · · · ε`. The order of the parameters
[ε1, ε2, . . . , ε`] in Definition 1 is very important.
Indeed, first we find ε∗1 and then fix ε1 ∈ (0, ε∗1).
Then, we find ε∗2 = ε∗2(ε1) and fix ε2 ∈ (0, ε∗2),
and so on. Finally, with the choice of parame-
ters [ε1, . . . , ε`] the trajectories of the system (1)
should satisfy the stability bound (2). Second,
note that the convergence speed in Definition 1
depends on the parameters, which is different from
standard definitions of SPA stability. However,
the overshoot are uniform in parameters (β is
independent of εi)

The proof of the following fact follows similar
steps as that of (Nešić and Teel, 2001, Corollary
1)

Lemma 1. Consider the parameterized family of
nonlinear systems

ẋ = g
(

t
ε ,x, a

)
, (4)

where x ∈ Rn, ε, a > 0. The function g(t,x, a)
is locally Lipschitz in x and a, uniformly in t,
as well as periodic in t of period 2π. Define
gav(x, a)

4
= 1

2π

∫ 2π

0
g(τ,x, a)dτ . Suppose that the

average system ẏ = gav(y, a) is SPA stable in a.
Then, the actual system (4) is SPA stable in [a, ε],
uniformly in ε.

In order to state the next lemma, we consider the
following nonlinear system

dx
dt = f(t,x, z, ε1, ε2, · · · , ε`)

ε`
dz
dt = g(t,x, z, ε`), (5)

where x ∈ Rn, z ∈ Rq and [ε1, ε2, · · · , ε`−1] ∈
R`−1. Let ε` = 0, the state vector z becomes
instantaneous and (5) takes the form



dx
dt = f(t,x, zs, ε1, ε2, · · · , ε`−1, 0)

0 = g(t,x, zs, 0), (6)

where zs denotes a quasi-steady state for the fast
state vector z. With zs = h(t,x), the following
reduced system is obtained

dx
dt = f(t,x,h(t,x), ε1, ε2, · · · , ε`−1, 0). (7)

Introducing y = z− h(t,x), τ = t−t0
ε`

and setting
ε` = 0, the boundary layer satisfies

dy
dτ = g(t0,x,h(t0,x) + y, 0) . (8)

The proof of the following lemma follows almost
the same steps as the proof of the main result in
(Teel et al., 2003).

Lemma 2. Suppose the following conditions hold:

(1) The algebraic equation g(t,x, zs, 0) = 0 pos-
sesses a unique root zs = h(t,x), where
h : Rn → Rq and its partial derivatives ∂h

∂x
are locally Lipschitz, uniformly in t.

(2) The reduced system (7) is SPA in [ε1, ε2, · · · , ε`−1].
(3) The equilibrium y = 0 of the boundary

layer system in (8) is globally asymptotically
stable, uniformly in x and t0.

Then, the system (5) is SPA stable in [ε1, ε2, · · · , ε`],
uniformly in ε` (with the time scale t).

We show in the next section that our extremum
seeking scheme exhibits several time scales that
will be characterized by several different param-
eters and the closed loop system has the form of
(1). We will show that the closed loop system of
the extremum seeking is SPA stable in the sense
of Definition 1.

3. PROBLEM FORMULATION

In this paper, our attention is centered on the
following SISO nonlinear model

ẋ = f(x, u)

y = h(x), (9)

where 2 f : Rn × R → Rn and h : Rn → R.
Consider a family of control laws: u = α(x, θ),
where θ ∈ R is a scalar parameter. The closed-
loop system is then

ẋ = f(x, α(x, θ)), (10)

whose equilibrium is parameterized by θ. For
simplicity, we assume that θ, u and y are scalars

2 In the sequel, all functions are assumed to be sufficiently
smooth (all derivatives that we need are continuous).

and the control law in (10) is static. All of these
assumptions can be removed but they will simplify
the presentation. The following assumption is the
same as (Krstić and Wang, 2000, Assumption 2.1).

Assumption 1: There exists a function l : R →
Rn such that

f(x, α(x, θ)) = 0, iff x = l(θ). (11)

Assumption 2 is a natural extension of (Krstić and
Wang, 2000, Assumption 2.2) that is needed to
prove non-local stability properties of the closed-
loop.

Assumption 2: For each θ ∈ R, the equilibrium
x = l(θ) of the system (10) is globally asymptoti-
cally stable, uniformly in θ.

Assumption 3: Denoting Q(·) = h ◦ l(·), there
exists a global maximum θ∗ of Q(·) and, moreover,
the following holds 3 :

∂Q
∂θ (θ) = 0 iff θ = θ∗; ∂2Q

∂θ2 (θ∗) < 0 . (12)

Remark 2 Assumption 3 is a stronger version of
(Krstić and Wang, 2000, Assumption 2.3), where
it was assumed that

∂Q
∂θ (θ∗) = 0; ∂2Q

∂θ2 (θ∗) < 0 . (13)

Using conditions (13), only local stability prop-
erties of the extremum seeking scheme were an-
alyzed in (Krstić and Wang, 2000). We use the
stronger condition (12) in Assumption 2 to show
a stronger (non-local) stability property of the
extremum seeking scheme.

4. MAIN RESULTS

Our main result is stated and proved in this sec-
tion. We simplify the extremum seeking controller
from (Krstić and Wang, 2000) and prove that this
simplified scheme still achieves extremum seeking.
We use the same method for tuning the con-
troller parameters as in (Krstić and Wang, 2000).
More importantly, under the above assumptions,
we prove a non-local stability result extending
the main result in (Krstić and Wang, 2000). Our
assumptions are natural when investigating non-
local results.

Consider the extremum seeking controller given
in Figure 1. Note that this scheme is a simplified
version of the scheme considered in (Krstić and
Wang, 2000), where an extra linear filter was used
to filter the output y of the plant. The following
equations describe the closed loop system:

3 Without loss of generality we assume that the extremum
is a maximum.
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Fig. 1. A extremum seeking feedback scheme

ẋ = f(x, α(x, θ̂ + a · sin(ω · t))
˙̂
θ = k · ξ
ξ̇ =−ωl · ξ + ωl · y · a · sin(ω · t). (14)

Introduce the change of the coordinates, x̃ =
x − x∗, θ̃ = θ̂ − θ∗, ξ̃ = ξ and note that the
point (x∗, θ∗, 0) is not an equilibrium point of the
system (14) whenever a 6= 0. Nevertheless, we will
show that the system in new coordinates is SPA
stable, which would ensure extremum seeking.
The system in new coordinates takes the following
form:

˙̃x = f(x̃ + x∗, α(x̃ + x∗, θ̃ + θ∗ + a · sin(ω · t))
˙̃
θ = k · ξ̃
˙̃
ξ =−ωl · [ξ̃ − h(x̃ + x∗) · a · sin(ω · t)] . (15)

Fix ωL,K ∈ R>0 and define

ωl
4
= ωδωL; k

4
= ωδK , (16)

where δ is a new “small” parameter. We introduce
the new time “τ = ω · t” and obtain:

ω
dx̃
dτ

= f(x̃ + x∗, α(x̃ + x∗, θ̃ + θ∗ + a · sin(τ))

dθ̃

dτ
= δ ·K · ξ̃

dξ̃

dτ
=−δ · ωL · [ξ̃ − h(x̃ + x∗) · a · sin(τ)] . (17)

This system exhibits the same two time-scale
structure as in (Krstić and Wang, 2000). Our first
main result is stated next:

Theorem 1. Under Assumptions 1-3, the closed-
loop system (15) is SPA stable in [a2, δ, ω].

A more complicated extremum seeking scheme
was investigated in (Krstić and Wang, 2000):

ẋ = f(x, α(x, θ̂ + a · sin(ω · t))
˙̂
θ = k · ξ

ξ̇ =−ωl · ξ + ωl · (y · −η)a · sin(ω · t)
η̇ =−ωh · η + ωh · y , (18)

where besides (16), we also use ωh
4
= ωδωH for

some fixed ωH > 0. The proof of Theorem 1 can
be modified in a straightforward manner to prove
the following result, whose proof is omitted for
space reasons.

Theorem 2. Under Assumptions 1-3, the closed-
loop system (18) is SPA stable in [a2, δ, ω].

Remark 3: Theorems 1 and 2 are stronger re-
sults than (Krstić and Wang, 2000, Theorem 1)
since we prove SPA stability, as opposed to local
stability in (Krstić and Wang, 2000). However,
our results are stated under stronger assumptions
(Assumptions 1 – 3) than those in (Krstić and
Wang, 2000). Assumptions 1 – 3 appear to be
natural when non-local stability is investigated.
Moreover, we note that it is not crucial in As-
sumptions 1 – 3 that all conditions hold globally.
For instance, the global maximum assumption
can be sometimes replaced by the local maximum
assumption:

∂Q
∂θ (θ) = 0 iff θ ∈ D and θ = θ∗; ∂2Q

∂θ2 (θ∗) < 0,

where D is a neighborhood of θ∗. We concentrate
only on the case D = R for simplicity. We note
that these conditions are not very restrictive,
whereas their global version is (Assumptions 2 and
3). Similarly, we could assume only local stability
in Assumption 2. If all of our assumptions were
regional (as opposed to global) we could still state
regional results on extremum seeking which would
be still stronger than the local results in (Krstić
and Wang, 2000).

Remark 4: Note that Theorem 1 specifies a rule
for tuning the extremum seeking controller via
Definition 1. Indeed, given (∆, ν) with which we
would like (2) to hold, we first fix a2 sufficiently
small, then δ sufficiently small, then ω sufficiently
small and finally we calculate ωl and k via (16).
This gives us the desired parameters for the con-
troller that will achieve non-local extremum seek-
ing. We note that it is possible to obtain estimates
of all of these parameters from our proofs but
these estimates will typically be very conservative.

Remark 5: Note that since h(·) is continuous
then for any ν > 0 there exists ν1 > 0 such that

|x̃| ≤ δ1 =⇒ |h(x̃ + x∗)− y∗| ≤ ν . (19)

Theorem 1 can be interpreted as follows. For any
(∆, ν), there exist parameters [a2, δ, ω] such that
for all |(x̃, θ̃, ξ̃)| ≤ ∆, we have that

lim sup
t→∞

|y(t)− y∗| ≤ ν.



In other words, the output of the system can be
regulated arbitrarily close to the extremum value
y∗ from arbitrarily large set of initial conditions
by adjusting the parameters [a2, δ, ω] in the con-
troller. In particular, the parameters [a2, δ, ω] are
chosen so that Definition 1 holds with (∆, ν1) and
ν1 is defined in (19).

Remark 6: Note that a, δ and ω in extremum
seeking design are usually small when given a
larger domain of attraction, there is an obvious
tradeoff in the design of an extremum seeking con-
troller. Indeed, while the domain of attraction will
be increased and we would converge closer to the
extremum if we reduce the parameters [a2, δ, ω],
this would typically slow down the convergence
speed of the scheme. It is an interesting research
topic to obtain extremum seeking schemes whose
speed of convergence does not change while the
domain of attraction is enlarged by tuning the
controller parameters.

Remark 7: In the convergence speed analysis of
the extremum seeking scheme, the “worst case”
convergence speed is considered. That is, the
convergence speed of the overall system depends
on the convergence speed of the slowest sub-
system in order to ensure a uniform bound of the
overall system.

Remark 8: There are three parameters (a, δ, ω)
that the designer can tune in the extremum con-
troller from (17). All other controller parameters
are determined via (16). We note that there is a
slight difference between the way that we tune
the parameters and the way this was done in
(Krstić and Wang, 2000). Indeed, (Krstić and
Wang, 2000, Theorem 1) states that under ap-
propriate assumptions the system (17) is locally

stable in
[
a2,

(
δ
ω

)]
, where

(
δ
ω

)
is treated as a

parameter vector. However, a closer inspection of
(Krstić and Wang, 2000) shows that (Krstić and
Wang, 2000, Theorem 1) can be restated so that
under the same assumptions the system (17) is
locally stable in [a, δ, ω]. Hence, we do not make a
distinction between the controller tuning scheme
in (Krstić and Wang, 2000, Theorem 1) and our
Theorem 1.

Sketch of Proof of Theorem 1: The system (17) has
2 time scales: fast dynamics x̃ and slow dynamics
(θ̃, ξ̃) when ω is a small positive constant. We next
use the singular perturbation method. To this end,
we set ω = 0 and “freeze” x̃ at its “equilibrium”,
x̃ = l(θ∗+ θ̃+a ·sin(τ))−x∗ to obtain the reduced
system in variables (ξr, θr):

[
dθr

dτ
dξr

dτ

]
= δ

[
K · ξr

−ωL[ξr − P (θ∗, θr, a · sin(τ))]

]
, (20)

where P (θ∗, θr, a ·sin(τ))
4
= Q(θ∗+θr +a ·sin(τ)) ·

a · sin(τ). It is more convenient to write in the
following time scale s := δτ :

[
dθr

ds
dξr

ds

]
=

[
K · ξr

−ωL[ξr − P (θ∗, θr, a · sin( s
δ ))]

]
.(21)

We introduce an auxiliary average system for (21):

[
dζ
ds
d%
ds

]
=

[
K%

−ωL% + ωL

2π

∫ 2π

0
P (θ∗, θr, a · sin(s))ds

]
.(22)

By Taylor expansions (Edwards and Penney,
1998), there exists a continuous function g such
that:

1
2π

∫ 2π

0
Q(θ∗ + θr + a · sin(s)) · a · sin(s)ds

= a2

2 · ∂Q
∂ζ (ζ + θ∗) + a4

2 g(ζ, θ∗, a). (23)

where g(ζ + θ∗, a)
4
= 1

2π

∫ 2π

0
[sin(ν)]4dν · r(a, θ∗, ζ)

and r(a, θ∗, ζ)
4
=

∫ 1

0
(1 − η)2 · ∂3Q

∂ζ3 (ζ + θ∗ +
ηa sin(s))dη. Therefore, (22) can be re-written as
follows,

[
dζ
ds
d%
ds

]
=

[
K%

−ωL% + ωL[a2

2
∂Q
∂ζ (ζ + θ∗) + a4

2 g(ζ, θ∗, a)]

]
.(24)

The proof of Theorem 1 is carried out in three
steps:

Step 1: We show that the average system (24) is
SPA stable in a2 (with time “s”). We constructe
a positive definite and radially unbounded Lya-
punov function V (ζ, %) = 1

2ζ2 + 1
c ζ · % + ( 1

2 +
1

2c2 )%2, where c
4
= K

ωL
. Taking derivative of V

along solutions of (24), we can show that system
(24) is SPA stable in a2, where the underlying
time scale is s.

Step 2: By using Lemma 1, the system (21) is
SPA stable in [a2, δ], uniformly in δ (with the time
scale s). Using s = δτ this immediately implies
that the system (20) is SPA stable in [a2, δ] (with
the time scale τ).

Step 3: According to Assumption 2, the bound-
ary layer system,

dx̄
dt = f(x̄ + l(ωt0), α(x̄ + l(ωt0), θ(ωt0))

+ω · ∂l

∂θ̃
· δ ·Kξ

= f(x̄ + l(0), α(x̄ + l(0), θ∗ + θ̃(0))), (25)

is asymptotically stable. In Step 2 we showed that
the reduced system of the singularly perturbed
system (17) is SPA stable in [a2, δ]. Hence, us-
ing Lemma 2, the system (17) is SPA stable in
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Fig. 2. The performance of the extremum seeking scheme

[a2, δ, ω], uniformly in ω (with the time scale τ).
Noting that τ = ωt, this implies directly that the
system (15) is SPA stable in [a2, δ, ω] (with the
time scale t), which completes the proof.

5. AN ILLUSTRATIVE EXAMPLE

The purpose of this example is to illustrate SPA
stability: a larger domain of attraction leads to
a slower convergence speed as parameters are
reduced. Consider the nonlinear system:

ẋ =−x + u2 + 4u; y = −(x + 4)2 (26)

The initial condition is chosen as
[
2 0 0

]T . The
initial values are far away from the desired one
[−4.0,−2, 0]T . We choose ωL = 4 and K = 5 in
the simulations. It is obvious that when x = −4,
y reaches its global maximum y∗ = 0. Let control
input u = θ, we have θ∗ = −2, x∗ = −4 and
y∗ = 0.

We hope that we can get a sufficiently large
domain of the attraction, for example, ∆ = 200
and ν = 0.1, for the extremum seeking scheme. By
choosing a = 0.8, δ = 0.05 and ω = 0.1, we can
see that the output converges to the vicinity of the
extremum value. If we reduce a such that a = 0.4
while keeping δ = 0.05 and ω = 0.1, we can see
from Figure 2 that y(t) converges much closer to
the optimal one y∗ = 0. However, it also can be
observed that convergence speed of states slows
down, especially, the convergence speed of θ and
ξ, as shown in Figure 2. The simulation results
illustrate that when we enlarge the domain of the
attraction, we are slowing down the convergence
speed.
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