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Abstract: In this paper, an adaptive scheme is proposed for a next generation
CT scanner. The purpose of the control is to estimate the contract bolus
position so its variations can be compensated by moving the patient table.
The convergence result has been achieved and the experimental results are very
promising. Copyright c©2005 IFAC
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1. INTRODUCTION

In the recent years, CT (Computed Tomography)
angiography has become one of the most popular
medical diagnostic tools (Rubin et al., 1998) due
to its non-invasive nature and faster scanning ca-
pabilities. In CT angiography, contrast material
is often administrated to allow a narrow temporal
window to obtain optimal visualization of vessels,
lesions and tumors (Kormano et al., 1983; Sheafor
et al., 1998; Tublin et al., 1999). The quality
of scans depends on the ability to synchronize
patient table position with the relatively narrow
aperture of the imaging system during propaga-
tion of a contrast bolus after intravenous injec-
tion. Contrast bolus synchronization is achieved
by using arrival monitoring with CT fluoroscopy.
However, arrival monitoring synchronizes only the
initial peak of contrast and the subsequently as-

sumed linear table velocity becomes problematic
as time increases.

There is abundant literature on fluid mechan-
ics and its applications including physiology
(Bassingthwaighte et al., 1992; Kroll et al., 1996),
pharmacokinetics (Nadler and Hidalgo, 1965),
and biomedical engineering (Chandran, 1992;
Goldsmith and Lewis, 1996). Several clinical stud-
ies of CT contrast enhancement have been pub-
lished (Sheafor et al., 1998; Berland, 1995; Kopka
et al., 1996). Bolus dynamics are complex and
influenced by contrast administration protocol
and patient characteristics (age, sex, weight,
height, cardiovascular status, renal function, etc.)
(Sheafor et al., 1998). Peak bolus velocity is rarely
uniform. Therefore synchronization of the bolus
with a fixed, preset table transport often results
in less-desirable vascular enhancement. Lack of



synchronization may be more problematic when
scanning speed is fast, contrast volume is small,
injection rate is high (leading to reduced peak
duration), and/or variable vessel lumen diameter.
Even for a normal individual, it is common that
the contrast bolus velocity is rapid in the torso
and relatively slow in the legs. Moreover, if asym-
metric peripheral vascular disease exists, there
may also be substantial variability in flow velocity
between the opposite legs. Scanning too early may
result in over-estimation of stenosis, while scan-
ning too late may result in venous opacification.
The published data shows that even in a normal
person, the bolus velocities at different body sec-
tion can vary by 8 times, see Table 1. Obviously,
adaptive bolus chasing techniques are relevant to
CT angiography because of the impact on image
quality, as well as the need to limit contrast dose
and radiation exposure.

To overcome these problems, three methods were
developed in the literature to individualize scan
timing during constant-speed spiral CT angiogra-
phy (Schweiger et al., 1998): (1) test bolus timing,
(2) ROI threshold triggering, and (3) visual cue
triggering. The test bolus method may decrease
lesion conspicuity due to equilibration by the test
bolus (Kopka et al., 1996; Hubener et al., 1982).
The two triggering methods are vulnerable to pa-
tient motion, usually related to breathing, which
may displace the target organ or vessel from
the scan plane (Kopka et al., 1996; Schweiger et

al., 1998; Silverman et al., 1996). The fundamental
limitation of all three methods is the inability to
match the table translation to the bolus propaga-
tion. Another factor not considered is that fluid
velocities surge during systole and are relatively
stationary during diastole.

Our aim is to develop an adaptive bolus chasing
CT angiography technique. The idea is illustrated
in Figure 1. The control system consists of an
imaging acquiring, processing and reconstruction
part, an adaptive algorithm to estimate and pre-
dict future bolus position and a controller that
moves the patient table to compensate the bolus
variations. Works reported here are the algorithm
development and experimental results in a clinical
environment based on the published clinical data
in Table 1. The convergence of the algorithm has
been achieved and the experimental results show
very promising results of the adaptive techniques
applied to CT angiography.

2. CONTROLS AND ESTIMATION
ALGORITHMS

The control goal is to move the patient table by
the the exact amount as the bolus but in oppo-

site direction so that the bolus and the imaging
aperture are synchronized.

Let pi = p(i∆t) be the bolus position at time t and
vi = v(i∆t) be the average velocity of the bolus
between two consecutive sampling instances t and
t + ∆t, where ∆t is the sampling period. Clearly,

pi+1 = pi + vi∆t

Should the bolus position pi+1 at time (i + 1)∆t

be available in advance at time i∆t, the controller
would move the patient table to pi+1 at time
(i + 1)∆t. The difficulty is that pi+1 is unknown
at time i∆t and has to be estimated based on
pk’s and vk’s, k ≤ i, or their estimates. As
illustrated conceptually in Figure 1, the overall
control system consists of 4 components. The first
part is imaging acquiring and processing that
provides real time bolus position. The second part
is a predictor. Based on some bolus dynamics
models and observed measurements, it predicts
future bolus positions. Since the bolus dynamics
is unknown, the model inevitably involves some
unknown parameters. Thus, the estimator is the
third part that estimates unknown parameters on-
line. The final part is a patient table driven by
a motor. The motor takes information from the
predictor and moves the table so that the imaging
aperture and the bolus are synchronized.

Clearly, an accurate estimation and prediction of
the future bolus position based on the current and
past bolus information is essential. The success of
the proposed strategy depends on how accurately
the model can predict. Therefore, modeling is an
important step in estimating and predicting the
bolus position.

Full models

It was shown (Wang et al., 2000c) that bolus
propagation is governed by a set of very large
number of partial differential equations which con-
tains a large number of patient and circulatory
stage-dependent parameters. The model is fairly
accurate provided that all parameters are avail-
able. Because these parameters are unknown, this
full model has a little use in practice for adaptive
bolus chasing CT angiography. It is known in the
adaptive community that partial differential equa-
tions are not easy to deal with. Morover, online
estimation of such a large number of parameters
in a very short time (typically CT angiography
lasts about 20-30 seconds) is impossible. Another
commonly used model to describe bolus dynamics
is the compartmental model (Bae et al., 1998) that
is also of little use for adaptive bolus chasing CT
angiography. Again, the model is a set of equa-
tions involving a large number of unknown pa-
rameters that are patient and circulatory stage de-
pendent. Obviously, parameters about the patient
vessel radius at each stage of the vascular tree



Blood Velocities Peak Velocity (cm/s) Mean Velocity (cm/s) Diameter (cm)

Aorta 150 ± 30 27 ± 8.9 1.8 ± 0.2

Common lliac artery 125 ± NA 13.5 ± 4.0 0.9 ± NA

External lliac artery 119 ± 21.7 10.5 ± 5.0 0.79 ± 0.13

Common Femoral artery 114 ± 24.9 10.2 ± 4.8 0.82 ± 0.14

Superficial Femoral artery 90.8 ± 13.6 8.8 ± 3.5 0.60 ± 0.12

Popliteal artery 68.8 ± 3.5 4.9 ± 2.9 0.52 ± 0.11

Posterior tibial artery 61 ± 20 4.4 ± 3.3 0.25 ± NA

Dorsalis pedis artery NA 3.6 ± 3.8 0.2 ± NA

Table 1. Blood velocity variation for a normal male adult

are difficult to have in advance. Also, disease-state
related parameters are impossible to be quantified
prior to an angiogram. Also, the compartmental
model describes contrast enhancement specific to
a compartment (organ or vessel) (Bae et al., 1998)
instead of predicting the bolus dynamic as a func-
tion of time.

Extended Hammerstein models

To overcome this difficulty, we proposed a simpli-
fied nonlinear model, called the extended Ham-
merstein model in our previous works (Bennett
et al., 2003). The idea is that within each body
section, the bolus propagation can be modeled by
a linear system, provided that the pulsatility of
the blood flow is not very strong. For instance
at a fixed location y, from (Bassingthwaighte et

al., 1966), the bolus dynamics can be described
by convolutions of three functions

b(t, y) = c(t) ∗ 1

σ(y)
√

2π
e
−

(t−tc(y))2

2σ2(y) ∗ 1

τ(y)
e

t

τ(y)

where the function c(t) is determined by the
injection of the bolus and the parameters tc, τ and
σ depend on the location y, i.e., the body section.

Clearly, the overall system is a nonlinear sys-
tem that consists of several linear systems which
switch from one to another depending on the body
section. If the body is divided into three sections,
the extended Hammerstein model consists of three
linear systems

b(t, y1), b(t, y2), b(t, y3)

for y 6= y1, y2, y3, b(t, y) can be obtained by inter-
polation. The difference between this model and
the traditional Hammerstein model is that the
nonlinearity acts like a switching function depend-
ing on external conditions. If the parameters σ, τ

and tc can be estimated, the complete dynamics of
the bolus is available and in turn, the next bolus
position is obtained. A difficulty of this model is
that the pulsatility is usually strong. The blood
surges in the systole phase and is smooth in the
diastole phase. Thus, to capture the pulsatility,
the systole and diastole phases have to be sepa-
rated. This adds complexity to the model and re-
quires additional physilogical measurements. For
instance, to determine whether it is in the systole
or diastole phase, additional EKG signal has to

be provided which may or may not be the case in
reality.

Non-parametric models

What we are interested is not complete dynam-
ics of the bolus but to be able to predict the
next bolus position. Though the bolus velocity
varies greatly, with current computer and CT
techniques, the difference of the bolus positions at
two consecutive sampling instances is extremely
small provided that the sampling rate is high. In
fact, the bolus velocity may be considered as a
constant between two sampling instances if the
sampling interval is small. With the knowledge of
the current bolus velocity which is the difference
between the current and the immediate past bolus
positions divided by the sampling interval, the
next (future) bolus peak position can be fairly
accurately predicted. To estimate the velocity,
only one parameter, the bolus position at the
current time that is patient and circulatory stage-
dependent, needs to be estimate. Moreover, this
information can be readily obtained in modern CT
systems (Wang et al., 2000a; Wang et al., 2000b).
Therefore, based on this very simple adaptive
nonlinear model, the future bolus position can be
estimated and predicted. Results reported in this
paper is based on this non-parametric model.

We now use the idea of the above non-parametric
model to define an adaptive algorithm to estimate
pi+1. Though the bolus velocity vi depends on i

and is unknown, with a very short sampling period
∆t, two consecutive vi and vi−1 are very close and
differ by only a very small amount. We assume in
this paper that there exists a small δ > 0 so that

vi−1 − vi = ∆i, |∆i| ≤ δ ∀i

Now, let v̂i and p̂i denote the estimates of vi and
pi at time i∆t, respectively, and define the the
adaptive estimation algorithm

v̂i = v̂i−1 + µ(pi − pi−1 + ei − v̂i−1∆t)
p̂i+1 = pi + v̂i∆t

(1)

where µ > 0 is the gain. Since pi and pi−1 are
measurements from a camera, noises are unavoid-
able denoted by ei. The hope is that p̂i converges
to pi asymptotically if ei, δ = 0 and is close to pi

if ei and δ are not zero but small.



Fig. 1. Control scheme illustration
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Fig. 2. Block diagram of the adaptive control

Fig. 3. Experimental setup

3. CONVERGENCE ANALYSIS

Let the estimation errors at time i∆t be,

ṽi = v̂i − vi

p̃i = p̂i − pi = (pi−1 + v̂i−1∆t)
= −(pi−1 − vi−1∆t)ṽi−1∆t



Then, the error equations are given by

ṽi = (1 − µ∆t)ṽi−1 + ∆i + µei

p̃i+1 = (1 − µ∆t)p̃i + ∆i∆t + µ∆tei

Theorem 3.1. Consider the adaptive algorithm
(1). Suppose |1 − µ∆t| < 1. Then,

(1) In the absence of noise, the estimation error
p̃k asymptotically satisfies

|p̃k| ≤
δ

µ

(2) If the noise is iid with zero mean and variance
σ2

e , then

|Ep̃k| ≤ |(1−µ∆t)kp̃0|+ |
k−1∑

i=0

(1−µ∆t)k−1−i

·δ∆t| + |
k−1∑

i=0

(1 − µ∆t)k−1−iµ∆tEei|

=⇒ |
k−1∑

i=0

(1 − µ∆t)k−1−iδ∆t| ≤ δ

µ

and

Ep̃2
i =⇒ {

k−1∑

i=0

(1 − µ∆t)k−1−i∆i∆t}2

+

k−1∑

i=0

[(1 − µ∆t)2]k−1−iµ2∆t2σ2
e

≤ (
δ

µ
)2 +

µ∆tσ2
e

2 − µ∆t

where E stands for the expectation operator.

Proof: The results follows easily from the facts
that

p̃k = (1 − µ∆t)kp̃0 +

k−1∑

i=0

(1 − µ∆t)k−1−i∆i∆t

+

k−1∑

i=0

(1 − µ∆t)k−1−iµ∆tei

and the first term decays exponentially, provided
0 < µ∆t < 1. This finishes the proof.

Remarks:

(1) The estimate p̂k is biased but the bias is very
small (≤ δ

µ
). This bias is unavoidable if the

variations ∆i’s of vk’s unknown.
(2) To make the bias δ

µ
small =⇒ µ large.

(3) To increase the convergence rate =⇒ 1−µ∆t

small =⇒ µ∆t close to 1.

(4) To make
µ∆tσ2

e

2−µ∆t
small =⇒ µ∆t small.

Thus, there is a compromise in choosing the gain
µ. Once the estimate v̂i is available, the next bolus
position can be estimated

p̂i+1 = pi + v̂i∆t

and the controller moves the table to p̂i+1 at time
(i + 1)∆t. The block diagram of overall control
system is shown in Figure 2.

4. EXPERIMENTAL RESULTS

The proposed adaptive control algorithm has been
implemented on a prototype CT scanner shown in
Figure 3. This prototype consists of four elements:
a Master Flex Pump 7550-30, a movable table
controlled by a Vexta α stepping motor AS46,
a Pulnix-6700 camera and a PC (personal com-
puter). The pump is controlled by the PC that
simulates a person’s heart which drives the bolus
through plastic tubings. The bolus velocity can
be arbitrarily assigned by computer programs.
The stepping motor takes commands from the PC
through a serial port. This simulates the patient
table. The camera, connected to the PC by a PCI
card, provides the real time bolus position that
simulates the CT imaging device. The imaging
acquiring and processing are carried by NI IMAQ
VISION DEVELOPMENT MODULES. In fact,
all the algorithms are implemented by using the
NI Labview software which is widely available.
The experimental results are shown in Figures 4
and 5. In Figure 4, the actual bolus position (solid
line) and the controlled table position (dotted
line) are shown. There are almost indistinguish-
able. Figure 5 shows the tracking error (mm)
which is the difference between the actual bo-
lus position and the controlled table position or
equivalently, the difference between the imaging
aperture and the actual bolus position. Clearly,
the proposed adaptive control algorithm in this
paper performs very well and the maximum track-
ing error is within 4mm.

5. CONCLUDING REMARKS

In this paper, preliminary experimental results
have been obtained for adaptive control of a next
generation of CT scanner. The control scheme
combines the imaging techniques, adaptive esti-
mation algorithms and controls. The experimental
data shows that the bolus position can be accu-
rately estimated and predicted by using a simple
non-parametric model which does not requires
much computations and needs to estimate only
one parameter, either the velocity or the position
of the bolus.

This work was supported in part by NIH NCI
EB004287-01 and NSF ECS-0098181.
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Fig. 4. The actual bolus position(solid) and the
controlled table position (dotted)
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