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Abstract: Two examples of application of nonlinear control methods to control of
molecular motion are studied. Firstly, the problem of controlling quantum observables
for a finite dimensional model of a diatomic molecule is examined and a new control law
is obtained based on speed-gradient approach. A substantial domain of initial conditions
in the phase space ensuring achievement of the control goal is determined. The results
are illustrated by the numerical example for Hydrogen fluoride molecule. Secondly, an
approach to dissociation control of a 3-atomic molecules with straight valence angle
is proposed based on speed-gradient method. A connection between dissociation and
synchronization of bond dynamics are analyzed by computer simulations for 3-atomic
HCN molecule. The presented problems and their solutions demonstrate a broad range
and prospects of potential applications of nonlinear control methods to control of
molecular systems.Copyright c© 2005 IFAC.

Keywords: Energy control, Speed gradient, Quantum mechanics, Nonlinear control,
molecular dynamics

1. INTRODUCTION

Since the beginning of the 1990s a growing interest
has been observed in control problems for molec-
ular systems. According to Science Citation Index,
the number of papers devoted to quantum control
in 1991-2002 reached 3800, and the number of ar-
ticles published in 2003 exceeds 600. Practical re-
alization of different control principles has become
possible recently thanks to development of fast fem-
toseconds pulse lasers. Using advanced control meth-
ods for changing natural course of chemical reactions,
controlling them and developing new chemical tech-

1 Supported by Russian Foundation of Basic Research (grant
RFBR 05-01-00869), Complex Program of the Presidium of RAS
No 19 “Control of mechanical systems” and Program “Development
of research potential of Higher School” of the Ministry of Education
and Science of RF.

nologies is studied by many authors, see (Brown and
Rabitz, 2002; Butkovsky and Samoilenko, 1980).

In this paper two examples of application of nonlinear
control methods to control of molecular motion are
studied.

In the first part (Sections 2,3,4) the control of ob-
servables problem is examined based on finite di-
mensional quantum-mechanical description of molec-
ular dynamics. Compared to papers (Ananjevsky et
al, 2003; Krempl et al, 1992), where control func-
tion is constructed using classical description in this
paper the control algorithm is constructed by apply-
ing Speed-Gradient method for quantum model. It is
proved that the control goal is attained for initial con-
dition in a sufficiently large domain of phase space.
The control function can be arbitrarily small. The effi-



ciency of control algorithm is illustrated by the numer-
ical example for Hydrogen fluoride (HF) molecule.

In the second part (Sections 5,6) a nonlinear oscillator
model with Morse potential is considered as the math-
ematical model of molecular dynamics. An approach
to dissociation control of a 3-atomic molecules with
straight valence angle is proposed based on speed-
gradient method. A connection between dissociation
and synchronization of bond dynamics are analyzed
by computer simulations for 3-atomic HCN molecule.

2. QUANTUM MODEL OF A DIATOMIC
MOLECULE

The following mathematical model of a controlled
quantum system is considered. It describes diatomic
molecule with Morse potential (Krempl et al, 1992)
(Hartree units):
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where i =
√−1 — imaginary unit; Φ(t, r) —

wave function, for any time instantt0: Φ(t0, r) ∈
L2(0, +∞); r — distance between atoms of molecule,
r ∈ (0,+∞); V (r) — Morse potential;M ,A,D,α,r0

— constants, which depend on specific molecule.

A finite level approximation by eigenfunctionsφk(r)
of unperturbed Schrodinger operator:H0 = − 1
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∂r2 +
V (r), corresponding to undissociated molecule states
is used. Eigenfunctions and eigenvalues are analyt-
ically given (Flugge, 1971). All eigenvalues corre-
sponding to undissociated molecule states can be cal-
culated with a high precision using the following ex-
pressions:
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eigenfunctionsφk(r) corresponding to eigenvalues
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Normalized factorsBk are calculated numerically us-
ing MATLAB. The finite level approximation yields
the following mathematical model of diatomic molecule:

iφ̇(t) = H0φ(t) + u(t)H1φ(t), φ(t) ∈ Cn, (5)

where φ(t) — coefficient vector of wave function
decompositionΦ(t, r) in n eigenfunctions;H0 —
diagonal matrix, element(k, k) is λk; H1 — matrix

corresponding to operator of control. The element
(k, m) of H1 can be calculated using the following
expression:A

∫ +∞
0

rφk(r)φm(r)dr.

The problem is to design the control functionu(t) to
obtain the convergence to the goal valueZg of observ-
ableZ(t) = φ(t)∗Zφ(t) of quantum system (5):

lim
t→+∞

φ(t)∗Zφ(t) = Zg. (6)

3. CONTROL ALGORITHM DESIGN

It is suggested to use Speed-Gradient algorithm in
finite form (Fradkov et al, 1999) for designing the
control function. The following goal function is intro-
duced (it doesn’t change whileu = 0):

Q(φ) = (φ∗Zφ− Zg)
2
, φ ∈ Cn. (7)

The convergence to zero of the goal function is equiv-
alent to achievement of the control goal. According to
speed-gradient method the control algorithm is chosen
to ensure nonpositivity of the derivative of the goal
function along trajectories of controlled system (5)
: u = −∇uQ̇(φ), here dot means derivative along
trajectories of the system (5), and∇u - gradient by
parameteru.

u = −∇uQ̇(φ) = −∇u[2(φ∗Zφ− Zg)(i(H0φ

+uH1φ)∗Zφ− iφ∗Z(H0φ + uH1φ))] (8)

Assume that the observableZ commute with opera-
tor H0. The following algorithm for controlling ob-
servables of diatomic molecule is proposed:

iφ̇(t) = H0φ(t) + uH1φ(t), (9)

u = 2(φ(t)∗Zφ(t)−Zg)(φ(t)∗{Z,H1}~φ(t)), (10)

where{·, ·}~ — quantum Poisson bracket
({H0,H1}~ = i

~ [Z, H1] = i
~ (ZH1 −H1Z)).

The feedback algorithm for controlling observables
was designed by applying Speed Gradient method
to the quantum system (9). But in quantum systems
feedback control is unrealizable because each mea-
surement changes the state of the system (Brown and
Rabitz, 2002). To use this algorithm the computer
simulation is performed for calculating control as the
time-depended function for known initial data. In the
simulation section an example of such control function
for energy of HF molecule is presented.

4. CONTROL ALGORITHM ANALYSIS

Impose the following restrictions on operatorsZ, H0

andH1:

A1) zk − zm 6= 0, k 6= m, k, m = 1, n wherezk are
eigenvalues ofZ in ascending order;

A2) (λk − λm) 6= (λr − λs), (k, m) 6= (r, s),
k,m, r, s = 1, n,



Fig. 1. a) Energy evolution (horizontal lines are energy levels); b) control functionu(t).

A3) hkH1hm 6= 0, k, m = 1, n, wherehk, k = 1, n
be linearly independent eigenvectorsH0.

The following theorem gives the mathematical basis
for using algorithm (9) , (10).

Theorem 1. Consider the system (5) with feedback
control law (10), whereZ and H0 commute. Given
the assumptions A1), A2), A3) andzk < Zg < zk+1.
Then for any initial condition fromM = {φ : zk <
φ∗Zφ < zk+1} the goal (6) is achieved.

Proof.Since the evolution operator of system (9) , (10)
is unitary, and the initial vector belongs to the unit
sphere, the total trajectory also belongs to the unit
sphere. Trajectory’s continuability onR is the con-
sequence of boundedness of the right part of equa-
tion (9). To proof the asymptotic stability the goal
function Q(φ) is used as the Lyapunov function. Its
derivative along the systems trajectories is nonposi-
tive:

Q̇(φ) = −2(φ∗Zφ− Zg)(φ∗{Z,H1}~φ)

×2(φ∗Zφ− Zg)(φ∗{Z,H1}~φ), (11)

It follows from LaSalle’s theorem that any system
trajectory converges to maximal invariant subset of the
setK = {φ : Q̇(φ) = 0}.
Examine the maximal invariant subset ofK. There are
only two cases wheṅQ(φ) is equal to zero:

• φ∗Zφ− Zg = 0,
• φ∗{Z, H1}~φ = 0.

Let K1 be a subset of phase space, where the first
equation is true,K2 be a subset where the second one
is true (K = K1 ∪ K2). The setK1 is the invariant
of the system (9). For any phase vectorφ1 : φ∗1Zφ1 −
Zg = 0 and for any time instantt0 function φ(t) =
eH0(t−t0)φ1 is the trajectory of the system (9) , (10)
and this trajectory belongs toK1. Therefore, maxi-
mal invariant ofK is the union ofK1 and maximal
invariant of K2. For trajectories belonging toK2 it
follows that the control function is equal to zero along
whole trajectory, and any trajectory can be given by
the following expression:

φ(t) =
n∑

k=1

ckexp(−iλkt)hk,

n∑

k=1

|ck|2 = 1. (12)

Substitutiion of this expression into the equation ofK2

yields:
n∑

k,m=1

c∗kcm(zk−zm)ei(λk−λm)th∗kH1hm = 0. (13)

Due to condition A2) functionsexp (i(λk − λm)t) are
linear independent. Therefore, this linear combination
is identically zero only if all the coefficients are zero. It
follows from conditions A1), A2), A3) that only one
of coefficientsck, k = 1, n can be nonzero. Hence,
maximal invariant ofK2 is the set of pure states of the
system (I(B) defines maximal invariant of setB):

I(K2) = {φ : φ = eichk, k = 1, n, c ∈ R} (14)

As long as goal function is nonincreasing, and its min-
imal value on elements of setI(K2) ismink=1,n(zk−
Zg)2, and the initial value of goal function is smaller
then this minimum (minimum is not zero), the goal
function converges to zero and the observableZ con-
verges to the goal valueZg. 2

Remark 1.Simulation demonstrated that the control
law (10) asymptotically drives observableZ to the
goal value from any initial state (except pure states).

Remark 2.The theorem can be applied not only for
diatomic molecule. The result can be useful for some
quantum systems like (5).

Simulation results. Algorithm (9) , (10) was ap-
plied to energy control of molecule HF, described by
equation (1). Constants for HF molecule are as fol-
lows (Krempl et al, 1992):M = 1732, A = 0.4541,
D = 0.2101, α = 2.1350, r0 = 1.75 (Hartree units).
Observable of energy isH0: E(t) = φ(t)∗H0φ(t).
Molecular energy levels are energy of pure states. The
initial value of phase vector is uniformly distributed
between 3rd and 4th energy levels. In atomic units the
initial energy is−0.1571. The goal value for energy
is−0.06, it lies between 10th and 11th energy levels.
The control function has the following formF (x) =
Kx. Gain factorK is 200. Time for simulating is



50 femtoseconds (1fs =10−15s). Figures (1) display
energy evolution (E(t)) and control function (u(t)).
The figures confirm efficiency of algorithm (9) , (10)
for control of diatomic molecule observables. Also
figures confirm that the area of stability is greater then
the one for which theorem was proved.

5. CONTROL OF ENERGY AND SELECTIVE
DISSOCIATION OF A MODEL 3-ATOMIC

MOLECULE

Problem of purposeful changing and stabilization of
energy of internal degrees of freedom in molecular
systems is an important problem of laser chemistry.
Processes of the bond excitation and dissociation in
weak infrared laser fields have many applications,
such as control of chemical reactions, chemical struc-
ture identification and others (Rice and Zhao, 2000).
In the second part of the paper we concentrate at the
process of controlled selective dissociation of strong
bond in a 2-DOF model of HCN molecule with clas-
sical mechanical representation of molecular dynam-
ics, suggesting some new approaches to the foregoing
problems.

Although molecular motion is properly described by
the Schrodinger equation, successful modelling for
many molecular purposes can be done with classi-
cal mechanics. Thus, since the dissociation stage is
characterized by the high values of energy, the re-
sults for classical and quantum-mechanical simula-
tions of controlled dissociation are often similar (see,
e.g. (Ananjevsky et al, 2003)). Often control design for
quantum-mechanical ensembles is very complicated.
Therefore we study the controlled selective dissoci-
ation for the model of molecule, based on classical
mechanical representation of the intramolecular dy-
namics.

The 3-atomic molecule HCN in external laser field is
modelled as two kinetically and potentially coupled
Morse oscillators with collinear orientation, interact-
ing with the field. Effects of bending, rotation and
changing orientation are neglected. These additional
degrees of freedom, surely, can play a role, but in
sufficiently intense external fields such molecule tends
to align along the field corresponding to a quasi-linear
model for the controlled motion (?).

Despite all these simplifications, there are some fun-
damental difficulties in a model analysis:

1. strong nonlinearity (so the oscillations frequency
depend on the energy and superposition principle do
not realize);

2. strong coupling between internal degrees of free-
dom (it leads to the additional displacement of fre-
quencies and fast energy redistribution).

The typical behavior of the uncontrolled unimolecular
system at high energy level is that deposited energy

will break the weaker bond. Thus for selective disso-
ciation of stronger bond we should control at oscilla-
tions frequency (to excite the system), and deposited
energy should be concentrated in stronger bond. Ad-
ditionally, control should be robust and effective when
its intensity is small (arbitrarily small). The problem
is complicated by the fact that control is scalar. These
features makes the problem of selective dissociation
nontrivial and interesting.

6. MODEL OF CONTROLLED SYSTEM

To describe the vibrations of HCN system we use
following notations:Zi = 1− e−αiRi (i = 1, 2) are
Morse variables,R1 andR2 are the displacements of
length of the CN and CH bonds from their equilibrium
valuesR1,eq andR2,eq, P1 andP2 are the conjugate
momenta corresponding toR1 andR2, m1 andm2

are reduced masses (1
m1

= 1
MC

+ 1
MN

and 1
m2

=
1

MC
+ 1

MH
, whereMC , MN , MH — atomic masses

of corresponding atoms).

The full Hamiltonian of the HCN molecule in external
laser field (?):

H = Hmol − d(R1, R2)U(t) (15)

whereHmol — molecular Hamiltonian, and the sec-
ond component represents the laser-molecule interac-
tion, U(t) is the electric field amplitude (as a func-
tion of time t) — control. Linear 3-atomic molecule
is modelled as two coupled Morse oscillators. The
coupling terms are of two kinds: one is a model inde-
pendent kinetic coupling term and the other describes
coupling within the interaction in internal coordinates.
Corresponding HCN molecular Hamiltonian:

Hmol = H1 + H2 + H12 (16)

with:

Hi =
P 2

i

2mi
+ Vi(Ri) i = 1, 2 (17)

which is composed of a kinetic energy term and a
potential energy termVi(Ri) for bondi of the form:

Vi(Ri) = Vi1Z
2
i + Vi2Z

3
i + Vi3Z

4
i i = 1, 2 (18)

Potential energy term (18) represents an effective po-
tential for each bond (initially in ground, then in
excited states). Expressions (17) can be called bond
energies (but they are not invariants in uncontrolled
system). The kinetic and potential coupling terms con-
stitute Hamiltonian of bonds interaction:

H12 = − 1
MC

P1P2 + V12(R1, R2) (19)

where:

V12(R1, R2) = V1Z1Z2 + V2Z
2
1Z2 + V3Z1Z

2
2 (20)

Dipole moment of molecule was chosen to simulate
that of an instantaneous dipole:

d(R1, R2) = de(d(R1)− d(R2)) =



de((R1 + R1,eq)e−αR1 − (R2 + R2,eq)e−αR2) (21)

In this equationde is meaningful an ”equilibrium
charge” of bonds (so the product of this value on
equilibrium bond length gives equilibrium value of
dipole moment).

The system parameters fitting the first 40 stretching
vibrational levels in the spectrum (with error0.01%)
can be found in (Smith et al, 1991).

Finally, full Hamiltonian can be rewritten as follows:

H =
P 2

1

2m1
+

P 2
2

2m2
− 1

MC
P1P2 +V1(R1)+V2(R2)+

+V12(R1, R2)− de(d(R1)− d(R2))U(t) (22)

Substitution of (22) into Hamilton equations

∂r

∂t
=

∂H

∂p

∂p

∂t
= −∂H

∂r

gives the following equations of motion :

Ṙ1 =
P1

m1
− P2

MC
Ṙ2 =

P2

m2
− P1

MC

Ṗ1 = −V ′
1(R1)− V ′

121
(R1, R2)− ded

′(R1)U(t)

Ṗ2 = −V ′
2(R2)− V ′

122
(R1, R2) + ded

′(R2)U(t)

where the dot denotes the time derivative while the
prime denotes the derivative with respect to corre-
sponding variable.

7. CONTROL ALGORITHM AND SIMULATION
RESULTS

Problem of selective dissociation of strong bond is
rather complicated and can not be satisfactorily solved
by means of nonfeedback control (e.g. excitation on
resonant frequency of strong bond or excitation with
slowly changing frequency). For the solution of prob-
lem various methods of control theory can be used,
such as optimal control (?) or method of reference
model on energy (Chen et al, 1997). However, con-
trol functions, designed by these methods, have some
defects, such as nonrobustness and complicated form
(it makes difficult applications of such control in ex-
periments). Broadly speaking, control function should
have simple temporal and frequency structure, and, as
was mentioned above, it should be robust and effective
when control intensity is small (arbitrarily small).

We will apply the speed-gradient type method to the
partial oscillator. Control provided by this method,
looks like negative friction.

The natural control goal is to increase the energy of
the partial oscillator corresponding to the strong bond
(other bond is regarded as absent). In this case the
goal is:Q = γ(H∗

1 − H1)2 → 0, whereH∗
1 — de-

sired value of energy (sufficiently high),H1 — current
value of partial oscillator energy (sum of the potential

and kinetic terms):H1 = P 2
1

2m1
+ V1(R1), γ — coeffi-

cient. According to the speed-gradient method we cal-
culate derivative of the goal function:̇Q = 2γ(H∗

1 −
H1)(−Ḣ1) = 2γ(H∗

1 − H1)(−d′(R1))Ṙ1U(t). We
take into account that derivative of the dipole moment
function is negative during the major part of time, so
the driving force have the same sign with velocity.
Disturbance from the other bond and its dynamic are
neglected in this control method (but not in the dy-
namics of whole controlled system). We should also
note that if the value of bond energy is sufficiently
high, then system dynamics changes cardinally (for
example, bond dissociation takes place). Thus, we can
consider that value of bond energy is less than desired
sufficiently high level within the framework of current
model. Then, opposition of the signs of control and
velocity is enough for decreasing of the goal func-
tion. Simplest control algorithms of such type have
the form of negative friction (viscous or dry) in strong
bond:

U = γṘ1, γ < 0 (23)

or

U = γsign(Ṙ1), γ < 0 (24)

Such control, obviously, injects energy in the strong
bond. However, deposited energy can break weak
bond because of energy redistribution or excitation
of this bond. One of the possibilities to avoid this
situation is to stabilize certain regimes of oscillations,
providing coordinated dynamics of bonds. It is obvi-
ous that anti-phase regime provides convenient coor-
dinated dynamics of bonds — if the system in the anti-
phase regime and control looks like negative friction
in strong bond (i. e. have the opposite sign with cor-
responding velocity), then excitation of strong bond
and suppression of weak bond vibration take place
simultaneously. Thus selective dissociation of strong
bond takes place as a result of energy injection in the
strong bond and neutralization of excess energy in the
weak bond. It is important that such control supports
anti-phase regime, hence if the system initially in this
regime and control is of described type then selective

Fig. 2. Example of selective dissociation process.



Fig. 3. Synchronization and selective dissociation.

dissociation of strong bond takes place almost surely.
In Fig. 1 one can see an example of process, described
above — system initially in the anti-phase regime, and
control is given by (23) withγ = −0.01 (horizon-
tal axis represents time, normalized on characteristic
system periodT0 minimal period of the resonant
oscillations in the linearized system).

One of the main advantages of this method is that if
coefficientγ belongs to certain rangeγ ∈ [γ0, γ1] then
synchronization of oscillations in anti-phase regime
takes place for initial data from rather wide region, and
hence selective dissociation of strong bond takes place
(according to the written above).

As an illustration of the connection between synchro-
nization and selective dissociation one can see Fig. 2.
For both pictures: control function is given by (23)
with γ = −0.01, initial data — (R1, R2, 0, 0) with
R1, R2 ∈ [1.54] (R1 : horizontal axis, increasing
from right to left; R2 : vertical axis, increasing from
bottom to top). For every initial data system with con-
trol is integrated during sufficiently long time. On the
left picture : if selective dissociation of strong bond
took place (strong bond dissociates, weak bond re-
mains unbroken), then corresponding point of plane is
painted over (color corresponds to time of dissociation
: blue — minimum, brown — maximum). On the right
picture : color of point corresponds to the index of
synchronismSyn at the terminal moment (when dis-
sociation of some bond occurs or time of integration
comes to the end). Index of synchronism :Syn =
min(Ti,Ta)
max(Ti,Ta) , whereTi, Ta are measures of time inter-
vals when the system is oscillating synchronously, in
in-phase and anti-phase mode, correspondingly. If the
same point on both picture is painted close to blue,
then selective dissociation of strong bond takes place
after the synchronization in anti-phase regime.

8. CONCLUSIONS

In the paper the possibility of applying speed-gradient
method to control of molecular systems is demon-
strated for two problems: control of quantum observ-
ables for a diatomic molecule and dissociation control

for a triatomic molecule with straight valence angle
based on classical description of molecular dynamics.
A substantial domain of initial conditions in the phase
space of quantum system ensuring achievement of the
control goal is determined both analytically and by
means of computer simulation. An interesting obser-
vation is made that dissociation in a triatomic system
often takes place after performing an anti-phase syn-
chronous motion during some time.
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