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Abstract: By introducing the second order Krylov subspace, a method for the reduction of
second order systems is proposed leading to a reduced system of the same structure. This
generalization of Krylov subspace involves two matrices and some starting vectors and
the reduced order model is found by applying a projection directly to the second order
model without any conversion to state space. A numerical algorithm called second order
Arnoldi is used to calculate the projection matrix. A sufficient condition for stability of the
reduced model is given and finally, the method is applied to an electrostatically actuated
beam. Copyright c©2005 IFAC
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1. INTRODUCTION

Nowadays, with the help of powerful computers and
applying advanced modelling techniques like Finite
Element Methods (FEM), complex behaviors can be
modelled leading to differential equations of high
orders. Such a modelling in Electrical Circuits and
Micro-Electro-Mechanical Systems, may lead to a
large set of differential equations of second order form
(Ramaswamy and White 2001, Bai et al. 2001, Shee-
han 1999). In reduced order modelling of second order
models, it is mostly desirable to construct a reduced
system which preserves the second-order structure
(Bastian and Haase 2003, Su and Craig Jr. 1989, Sal-
imbahrami and Lohmann 2004b, Lohmann and Salim-
bahrami 2004, Salimbahrami and Lohmann 2004a).

A leading method in reducing large scale systems is
moment matching by means of Krylov subspaces (Fre-
und 2003). In this paper, a generalization of Krylov
subspace methods for second order systems using
a second order Krylov subspace is presented which

1 This work is partially supported by German Research Council
(DFG).

was first introduced in (Salimbahrami and Lohmann
2003, Salimbahrami and Lohmann 2004a) and here
is extended to be useful in reduction of multi-input
multi-output (MIMO) systems including some further
discussions on passivity, stability and matching the
moments around different points as an extension of the
work in (Grimme 1997) to the second order systems.

Second order Krylov subspaces modify the method
presented in (Su and Craig Jr. 1989) to match the
moments around different points and to increase the
number of matching moments when using two-sided
methods. Because the method is based on applying the
projection directly to the original second order system,
all calculations can be done in half dimension without
using a state space equation.

2. SECOND ORDER KRYLOV SUBSPACE

The high-order models considered in this paper are
assumed to be given in the form

{
Mz̈(t) + Dż(t) + Kz(t) = Gu(t),
y(t) = Lz(t), (1)



with n second order differential equations, m inputs
and p outputs. Equivalently, the model (1) can be writ-
ten in state space with N = 2n first order differential
equations as follows,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
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where F ∈ R
n×n is a nonsingular matrix. For sim-

plicity, F = I can be chosen or for the case that K is
nonsingular F = K.

The i-th moment (around zero) of the system (1) can
easily be calculated using (2):

mi =
[
L 0

]([ 0 F
−K −D

]−1 [F 0
0 M

])i

×
[

0 F
−K −D

]−1 [ 0
G

]

=
[
L 0

] [−K−1D −K−1M
I 0

]i [−K−1G
0

]
.(3)

To calculate the moments by a recursive procedure, the
second order Krylov subspace is defined as follows.

Definition 1. The second order Krylov subspace is
defined as,

Kq(A1,A2,G1) = colspan{P0,P1, · · · ,Pq−1},
(4)

where

{
P0 = G1 , P1 = A1P1

Pi = A1Pi−1 + A2Pi−2, i = 2, 3, · · · (5)

and A1,A2 ∈ R
n×n,G1 ∈ R

n×m are constant
matrices. The columns of G1 are called the starting
vectors and the matrices Pi are called basic blocks.

Definition 2. The second order Krylov subspaces
Kq1(−K−1D,−K−1M,−K−1G) and
Kq2(−K−T DT ,−K−T MT ,−K−T LT ) are called the
input and output second order Krylov subspaces for
system (1), respectively.

3. REDUCTION THEOREMS

The idea of the reduction method is to find the projec-
tion matrices V and W that can directly be applied
to the second order model (1) and match some of the
first moments. To do so, the connection between the
second order Krylov subspaces and the moments of
the second order systems is used as formulated in the
following lemma.

Lemma 3. Consider the input and output second order
Krylov subspaces for system (1) with corresponding
basic blocks Pi and P̃i, respectively. Then,

mi = LPi = P̃T
i G, i = 0, 1, · · · .

The proof of this lemma is straightforward and comes
from the definition of the second order Krylov sub-
space and equation (3). Now, consider a projection as
follows,

z = Vzr, V ∈ R
n×q, z ∈ R

r, zr ∈ R
q, (6)

where q < n. By applying this projection to system
(1) and then multiplying the state equation by the
transpose of a matrix W ∈ R

n×q, a reduced model
of order Q = 2q is found,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Mr︷ ︸︸ ︷
WT MVz̈r +

Dr︷ ︸︸ ︷
WT DV żr +

Kr︷ ︸︸ ︷
WT KVzr =

WT G︸ ︷︷ ︸
Gr

u,

y = LV︸︷︷︸
Lr

zr.

(7)

This reduced model is in the desired form (1) and
thereby preserves the second-order character of the
original model! For the calculation of V and W the
second order Krylov subspaces are used, as described
by the following theorems.

Theorem 4. If the columns of V used in (7), form a
basis for the input second order Krylov subspace and
the matrix W is chosen such that Kr is nonsingular,
then the first q1 moments (the moments from m0 to
mq1−1) of the original and reduced models match, ,
assuming that K is invertible.

PROOF. Consider the matrices{
Pr0 = −K−1

r Gr , Pr1 = K−1
r DrK−1

r Gr

Pri = −K−1
r DrPr(i−1) − K−1

r MrPr(i−2)
(8)

By using lemma 3, we just prove that Pi = VPri for
i = 0, · · · , q1 − 1 where Pi and Pri are the i-th basic
blocks of the input second order Krylov subspace for
the original and reduced order models, respectively.
For the first basic vector we have,

VPr0 =−VK−1
r Gr = −V(WT KV)−1WT G

= V(WT KV)−1WT K(−K−1G)

= V(WT KV)−1WT KP0.

The matrix P0 is in the second order Krylov subspace
and there exists R0 ∈ R

q×m such that P0 = VR0,

VPr0 = V(WT KV)−1WT KVR0

= VR0 = P0. (9)

For the next moment, the result in equation (9) is used,



VPr1 =−V(WT KV)−1WT DVPr0

=−V(WT KV)−1WT DP0

= V(WT KV)−1WT K(−K−1DP0)

= V(WT KV)−1WT KP1.

P1 is in the Second Order Krylov Subspace and there
exists R1 ∈ R

q×m such that P1 = VR1. Therefore,

VPr1 = V(WT KV)−1WT KVR1

= VR1 = P1. (10)

Now consider that the statement is true until i = j−1,
i.e. Pi = VPri for i = 0, · · · , j − 1. By using the
results for i = j − 2 and i = j − 1, for i = j we have,

VPrj = V
[−(WT KV)−1WT DVPr(j−1)

−(WT KV)−1WT MVPr(j−2)

]
= V

[−(WT KV)−1WT DPj−1

−(WT KV)−1WT MPj−2

]
= V

[−(WT KV)−1WT KK−1DPj−1

−(WT KV)−1WT KK−1MPj−2

]
= V(WT KV)−1WT K

[−K−1DPj−1

−K−1MPj−2

]
= V(WT KV)−1WT KPj .

Pj is in the second order Krylov subspace and can be
written as Pj = VRj for Rj ∈ R

q×m. Thus,

VPrj = V(WT KV)−1WT KVRj

= VRj = Pj , (11)

and by induction, it is proved that Pi = VPri for
i = 0, · · · , q1 − 1. For i = q1, because the matrix Pq1

is not in the second order Krylov subspace, the proof
fails, and q1 moments match.

In the SISO case, theorem 4 has some similarities to
the results in (Su and Craig Jr. 1989) but it is indepen-
dent of the output of the system. This fact is important
for doubling the number of matching moments (by
theorem 5) compared to (Su and Craig Jr. 1989). Also,
theorem 4 is more straightforward and only uses the
state equations, similar to the standard Krylov sub-
space methods in state space (Freund 2003).

By using both, input and output second order Krylov
subspaces, it is possible to match more moments and
to find better approximations for the original large
scale system:

Theorem 5. If the columns of V and W used in (7),
form bases for the input and output second order
Krylov subspaces, respectively, both with rank q, then
the first q1 + q2 moments of the original and reduced
models match, assuming that K and Kr are invertible.

PROOF. To prove this theorem, we use the definition
(3) of the moments in state space. It can be shown that

applying the projection to the second order system (1)
to find the reduced order model (7) is equivalent to
applying the projection

[
z
ż

]
=
[
V 0
0 V

]
︸ ︷︷ ︸

Ṽ

[
zr

żr

]
, (12)

to the system (2) with F = K and multiplying the
state equation by,

W̃T =
[
WT 0
0 WT

]
. (13)

According to theorem 4, independent of the definition
of the output equation, the first q1 moments match,

(A−1E)iA−1B = Ṽ(A−1
r Er)iA−1

r Br, (14)

for i = 0 · · · q1 − 1 and dual to this fact, we have

C(A−1E)iA−1 = Cr(A−1
r Er)iA−1

r W̃T , (15)

for i = 0 · · · q2 − 1. The matrices A, E and C are
defined as in system (2) and the matrices Ar, Er and
Cr are defined by converting the reduced system (7)
into state space form. We factorize the moments of the
original model into two parts,

mi = C(A−1E)i−q1A−1EA−1Eq1−1A−1B,

for i > q1 − 1. By using the equations (14) and (15),
for i = q1, · · · , q1 + q2 − 1 we have,

mi = Cr(A−1
r Er)i−q1A−1

r W̃T × E ×
Ṽ(A−1

r Er)q1−1A−1
r Br.

W̃T EṼ = Er and then mi = mri where i =
0, · · · , q1 + q2 − 1.

4. SECOND ORDER ARNOLDI ALGORITHM

In this section, the Arnoldi algorithm is extended to
find a basis for a given second order Krylov sub-
space. Consider the second order Krylov subspace
Kq(A1,A2,G1) with m starting vectors. The algo-
rithm 1 finds an orthonormal basis for this subspace,
i.e. VT V = I, and the columns of the matrix V form
a basis for the given subspace.

To show that the algorithm 1 produces the required
basis for a given subspace, just consider the algorithm
is applied to the input second order Krylov subspace
of system (1). Then, the vectors vi and li are the
upper and lower parts of the basis vectors of the
Krylov subspace Kq(A−1E,A−1B) in system (2),
respectively. Using the results in (3), it is not difficult
to show that the algorithm 1 produces a basis for
the corresponding second order Krylov subspace. In



Algorithm 1. Second order Arnoldi algorithm

0. (a) Delete all linearly dependent starting vec-
tors to get m1 vectors.

(b) Set v1 = g1
‖g1‖2

. where g1 is the first starting
vector after deleting the dependent starting
vectors and set l1 = 0 for l1 ∈ R

n.
(1) For i = 2, 3, · · · , do,

(a) Calculating the next vector: if i ≤ m1 then
set vi as the i-th starting vector and li = 0.
Otherwise, set

v̂i = D̆vi−m1 + M̆li−m1 , l̂i = vi−m1 .

(b) Orthogonalization: For j=1 to i-1 do,

h = v̂T
i vj , v̂i = v̂i − hvj , l̂i = l̂i − hlj .

(c) Deflation: If v̂i �= 0 then go to 1d.
Else, if l̂i �= 0 then vi = 0 and go to 1e.
Else, m1 = m1 − 1 and go to 1a (but go to
step 2 if m1 = 0).

(d) Normalization: vi = v̂i

‖v̂i‖2
and li = l̂i

‖v̂i‖2
.

(e) Increase i and go to step 1a.
(2) Delete the zero columns of the matrix V pro-

duced by deflation process.

two-sided methods, the algorithm 1 is used twice,
first for the input second order Krylov subspace and
then for the output second order Krylov subspace,
and the matrices V and W are found. The resulting
reduction scheme can be called a two-sided second
order Arnoldi method.

For deflation, in step 1c, it is checked if the new vector
is a linear combination of the previous ones. If only v̂i

is expanded by v1, · · · ,vi−1 (it is identified by v̂i =
0), then li should not be deleted to be used in the next
iteration and vi is substituted by zero (which is deleted
at the end). If both vectors v̂i and l̂i are expanded by
v1, · · · ,vi−1 and l1, · · · , li−1, respectively then, the
algorithm deletes both vectors. In practice, v̂i = 0
and l̂i = 0 should be substituted with ‖v̂i‖2 < ε and
‖̂li‖2 < ε, where ε is a small positive number.

The moments of the MIMO system (1) are p × m
matrices, where each column is related to an input
and each row is related to an output of the system. In
algorithm 1, the order of the reduced system is inde-
pendent of the number of inputs and outputs which is
an advantage specially when the system is not square
with high number of inputs and outputs. If j columns
of the matrix V (or W) are related to the k-th input (or
output), then the k-th column (or row) of the moment
matrix matches up to at least the j − 1-st moment.

5. GUARANTIED STABILITY

In using Krylov subspace methods to reduce the order
of a stable large scale model, there is no guaranty to
find a stable reduced model. There exists a guaranty
only for some types of systems which are related to

passive systems (see the concept of positive realness
as mentioned in (Freund 2000)). As mentioned in
(Freund 2000) a one-sided method can preserve pas-
sivity. This result can be generalized to second order
system using the state space model (2):

Theorem 6. In system (2), if A + AT � 0 and E =
ET � 0, then the reduced model using one-sided
state space Krylov subspace method with W = V, is
stable and furthermore, the transfer function H(s) =
BT V

(
sVT EV − VT AV

)−1
VT B is passive.

Ã � 0 for a symmetric matrix Ã ∈ R
N×N denotes

that Ã is nonnegative definite; i.e. xT Ãx ≥ 0 for
every x ∈ R

N . By considering the projection matrices
(12) and (13) applied to the system (2) with F = K,
the result of theorem 6 can easily be generalized to
second order system to extract necessary conditions to
preserve stability.

Theorem 7. In system (1), if D + DT � 0, K =
KT 	 0 and M = MT � 0, a one-sided method
with the choice W = V results in a stable reduced
model.

6. RATIONAL INTERPOLATION

Matching the moments of the second order model
around a point s0 �= 0, can also be done by applying
a projection to the original model (1). The transfer
function of system (1) by direct Laplace transform
is H(s) = L(s2M + sD + K)−1G. The moment
of H(s) around s0 is equal to the moments of the
following system around zero,

H(s + s0) =

L
(
(s + s0)2M + (s + s0)D + K

)−1
G

= L
(
s2M + s(D + 2s0M)

+(K + s0D + s2
0M)

)−1
G

By using equation (3), the moments of H(s + s0)
are calculated by substituting the matrix K by K +
s0D + s2

0M and the matrix D by D + 2s0M in
the definition of the moments around zero, the mo-
ments around s0 is found. Therefore, to match the
moments around s0, the same substitution as in the
moments should be done in the definition of input
and output Krylov subspaces; i.e. the second order
Krylov subspaces Kq1(−(K + s0D + s2

0M)−1(D +
2s0M),−(K + s0D + s2

0M)−1M,−(K + s0D +
s2
0M)−1G) and Kq2(−(K + s0D + s2

0M)−T (D +
2s0M)T ,−(K+s0D+s2

0M)−T MT ,−(K+s0D+
s2
0M)−T LT ) should be considered and then by find-

ing the corresponding bases as projection matrices the
reduced order system can be found.

This result can also be generalized to match the mo-
ments around different points s1, · · · , sk by consid-



ering k different second order Krylov subspace and
finding a projection matrix whose columns form a
bases of the union of the given second order Krylov
subspaces. Such a projection matrix can be calculated
by extending the second order Arnoldi algorithm.

7. APPLICATION TO ELECTROSTATICALLY
ACTUATED BEAM

We apply the proposed approach for reduced order
modelling of an electrostatically actuated beam which
is used in RF switches or filters 2 . Given a simple
shape, they often can be modelled as one-dimensional
beams embedded in two or three dimensional space.
This model describes a slender beam which is actuated
by a voltage between the beam and the ground elec-
trode below; see figure 1. On the beam, at least three
degrees of freedom per node have to be considered. On
the ground electrode, all spatial degrees of freedom
are fixed, so only charge has to be considered. The
damping matrix is calculated by a linear combination
of the mass matrix M and the stiffness matrix K.
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Fig. 1. A conducting beam supported at both ends with
counter electrode below.

Based on the finite element discretization presented in
(Weaver et al. 1990), an interactive matrix generator
has been created. After modelling of the beam, a set of
differential-algebraic equations of the following form
(1) is found. Details of the implementation are avail-
able in (Lienemann et al. 2004). A typical input to this
system is a step function; periodic on/off switching
is also possible. The reduced model should thus both
represent the step response as well as the possible
influence of higher order harmonics.

Two types of model are considered: an undamped
model (D = 0) and a lightly damped model, both
of order N = 15992 with n = 7996 second or-
der differential equations. The original models are re-
duced to different order. It should be noted that the
reduced system of the undamped model leads to an
undamped system! In table 1, the maximum frequency
that the reduced system is accurate is given. These
result can be compared to the figures 2 and 3 where
some of the reduced systems are plotted. By going
to higher orders better accuracy at higher frequencies
can be achieved. Because of preserving the second
order structure, the slope of the bode plots at high
frequencies is −40dB/dec..

2 The model can be downloaded from Oberwolfach
Model Reduction Benchmark Collection available online at
http://www.imtek.uni-freiburg.de/simulation/benchmark/

Table 1. Maximum accurate frequency
fmax compared to the reduced system of

order 80

Model Order q s0 fmax

Undamped
model

8 0 1900Hz
12 0.03 2550Hz
16 30 5800Hz
40 2 × 104 61kHz

Damped
model

8 0 2280Hz
12 0 5500Hz
16 0.5 6600Hz
20 2 × 103 15kHz
40 2 × 104 60kHz
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Fig. 2. Frequency response of the reduced systems of
the undamped model.
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Fig. 3. Frequency response of the reduced systems of
the damped model.

In figures 5 and 4, the step response of the reduced
systems are compared to each other. For the undamped
model, order 12 has an acceptable output however
after order 16, the step response remains almost un-
changed. For the damped model, the response of the
order 8 reduced system is not far from the other sys-
tems but after order 16 the step response has very
small changes by going to higher orders.
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Fig. 4. Step Response of the reduced systems of the
damped model.
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Fig. 5. Step Response of the reduced systems of the
undamped model.

8. CONCLUSION

A generalization of the Krylov subspaces was applied
to reduce large scale second order models, matching
some of the first moments of the original and reduced
order models. The advantages of the methods are:

• The second order structure is preserved.
• Compared to the Krylov subspace methods in

state space, half number of iterations is necessary
to reduce to the same order and the calculations
are done in a half dimension.

• Some of the properties of the original systems are
preserved; the undamped second order models
are approximated with undamped reduced mod-
els, one sided methods preserve definiteness of
the mass, damping and stiffness matrices.

• It has been proposed how to match the moments
around s0 �= 0 or around different points .

The method was successfully applied for reduced or-
der modelling of an electrostatically actuated beam
model.
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