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Abstract: This paper deals with the implementation of a hybrid force/velocity
controller for the contour tracking of an object of an unknown shape performed
by an industrial robot manipulator. In particular we propose the use of a gain
scheduling approach in order to cope with the configuration dependent dynamics
of the manipulator in constrained motion and therefore in order to allow to
obtain satisfactory performances in a very large portion of the robot workspace.
Experimental results, obtained with a two degrees-of-freedom SCARA industrial
robot manipulator show the effectiveness of the approach. Copyright c© 2005 IFAC
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1. INTRODUCTION

Nowadays industrial settings employ robots in
fixed and highly structured environments so that
reconfiguration efforts are a clear barrier to face
the continuous changes required by the market
demand. In order to cope with these limits intelli-
gent robots that are able to autonomously adapt
themselves to semi-unstructured tasks are a key
issue to cut re-programming costs and to shorten
the lead to production time. Automatic track-
ing of unknown planar contours is an example
of an advanced task required by many industrial
applications (e.g. grinding, deburring, polishing)
where a high degree of autonomy is needed as
opposite to standard industrial operations were
robots reproduce previously recorded paths with
a little amount of feedback from the process under
control. Among the all possible force controlled
contour tracking strategies, hybrid force/velocity
control (Raibert and Craig (1981); Craig (1989))

is one of the most well-known. However, con-
versely to strategies that employ internal posi-
tion or velocity loops (Starr (1986); Kazanzides
et al. (1989); Bossert et al. (1996); Yu and Ki-
effer (1999)), few extensive experimental results
appeared in the literature. In particular, experi-
ments that take into account the use of a large
portion of the manipulator workspace are often
overlooked. Actually, the manipulator dynamic
behavior during a constrained motion can be very
variable and the stiffness of the joints, the mass of
links, the manipulator configuration, the contact
direction and the nature of the constraint have
to be considered. In this context the tuning of
the controller parameters to achieve a satisfactory
performance in all the possible planar contour
tracking tasks is indeed very difficult.
In this paper, we propose the use of a gain schedul-
ing approach to allow reliable and effective op-
erations in very different working conditions as
required by industrial applications.



2. EXPERIMENTAL SETUP

Although the concepts discussed in this paper
can be applied in general, in the following we
refer to a two-degrees-of-freedom planar industrial
SCARA robot, as this is the one adopted in the
experiments. The set-up available in the Applied
Mechanics Laboratory of the University of Bres-
cia consists of an industrial manipulator manu-
factured by ICOMATIC (Gussago, Italy) with a
standard SCARA architecture where the z-axis
has been blocked for our planar tasks. Both links
have the same length of 0.33 m. The arm is ac-
tuated by two DC motors driven by conventional
PWM amplifiers and position measurements are
available by means of two incremental encoders
with 2000 pulses/rev. resolution. Velocity is es-
timated through numerical differentiation whose
output is then processed by a low-pass 2-order
Butterworth filter (100 Hz cut-off frequency and
1.0 damping ratio). An ATI 65/5 Force/Torque
sensor capable of measuring forces in a ±65 N
range and with a resolution of 0.05N is mounted
at the manipulator wrist. The corresponding sig-
nals are processed at 7.8 kHz frequency by an
ISA DSP based board and collected by the robot
controller at 1 kHz. The contact is achieved by
means of a proper probe endowed with an 8 mm
diameter ball bearing with whose aim is reducing
tangential friction forces that may arise from the
contact with the piece. The PC-based controller
is based on a QNX4 real time operating system
and the control algorithms are written in C/C++
language. Acquisition and control are performed
at a frequency of 1 kHz.

3. CONTOUR TRACKING

With reference to Figure 1, frame (0) refers to
robot base, while task frame (T) has its origin
on the robot end-effector, its n-axis is directed
along the normal direction of the piece contour
and its t-axis along its tangent; ϑ is the angle
between axis n and axis x of frame (0). Let Q =
[q1, q2]T be the vector of joint positions and Q̇, Q̈
its first and second time derivatives respectively.
Since a suitable belt transmission keeps the end-
effector with constant orientation with respect
to the absolute frame, force measurements are
directly available in frame (0). Let F := F(0) =
[Fx, Fy]T and F(T ) = [Ft, Fn]T be the vectors of
contact force in frame (0) and (T) respectively.
They are related to each other by the equation
F = M0T (ϑ)F(T ) denoting with Mij the rotation
matrix from frame j to frame i. Vector V(T ) =
[Vt, Vn]T representing Cartesian velocity in frame
(T) can be obtained from the relation

V(T ) = MT0V(0) = MT0(ϑ)J(Q)Q̇

where J(Q) is the robot Jacobian matrix. The aim
of a contour tracking task is to control the normal
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Fig. 1. Sketch of a SCARA robot following a
contour.

force and the tangential velocity of the robot
probe along n and t directions of task frame (T).
These directions can be detected, assuming that
the contact friction force on the tangent direction
is negligible with respect to the normal contact
force (this is achieved by adopting a suitable
probe endowed with a ball bearing, as described
in Section 2), by on-line estimating the angle ϑ as:

ϑ = atan2(Fy, Fx) = arctan
(

Fy

Fx

)
± π. (1)

4. EFFECT OF JOINT ELASTICITIES AND
LINK MASSES

It is well known that the dynamics of a robot
manipulator can be expressed as:

Mq(Q)Q̈+C(Q, Q̇)Q̇+f(Q̇)+G(Q) = τ−J(Q)T F

where Mq(Q) is the inertia matrix, C(Q, Q̇) is
the matrix of centrifugal and Coriolis terms, f =
[f1(q̇1), f1(q̇2)]T is the vector of joint friction
forces, G(Q) is the gravity forces term (null in our
case), τ is the joint torques vector and F is the
already defined vector of forces exerted from the
robot to the environment. The elasticity of the
speed reducers (and of the transmission shafts),
which are typically present in an industrial serial
manipulator, may affect the robot behavior in a
force control task. Denoting by ∆Q = [∆q1,∆q2]T
the vector of joint deflections, we assume that, for
small deformations, the following linear relation
holds:

τ = χ∆Q (2)
where χ = diag[χ1, χ2] is the 2 × 2 diagonal
matrix containing the joint stiffness parameters
for each axis. For a serial robot the following
relations express the kinetostatic duality that map
joint diplacement/torque to end-effector displace-
ment/force respectively (∆X = [∆x, ∆y]T ):

∆X = J(Q)∆q, τ = J(Q)T F. (3)

Combining equations (3) it follows that:

F = K(Q)∆X (4)

where
K(Q) = J(Q)−T χJ(Q)−1 (5)



Table 1. Estimated model parameters.

meq,m [kg] meq,M [kg] m2 [kg] k1 [N/m] k2 [N/m]
37 825 2.5 18 · 103 104

Robot Sensor 
+ 

end effector

meq m2

k1

c1

k2

c2

f

x1 x2

Fig. 2. Model of the manipulator in contact with
the environment.

is the configuration dependent stiffness matrix,
which maps the displacement of the end effector
upon the exertion of the force F due to joint
compliance.
The behavior of the manipulator depends on the
masses of the links as well. Considering only
inertial forces we can write:

τ = MqQ̈ (6)

For a low tracking speed the well known relation
(X = [x, y]T )

Ẍ = J̇(Q)Q̇ + J(Q)Q̈, (7)

can be rewritten neglecting the term J̇(Q)Q̇ as:

Ẍ = J(Q)Q̈ (8)

and combining it with equation (3) yields:

F = Ms(Q)Ẍ (9)

where Ms(Q) = J(Q)−T MqJ(Q)−1 is the configu-
ration dependent inertial matrix, which maps the
acceleration of the end effector upon the exertion
of the force F due to link masses. An intuitive
meaning of the stiffness and inertial behavior of
a manipulator expressed by equation (4) and (9)
follows from the evaluation of the force required
to generate a unit-length displacement and a uni-
tary acceleration respectively at the end effec-
tor; calculation of ∆X from equation (4) into
(∆XT )(∆X) = 1 yields:

FT K(Q)−T K(Q)−1F = 1 (10)

which represents a stiffness ellipsoid whose prin-
cipal axis coincide with the eigenvectors of the
matrix K(Q)−T K(Q)−1 and whose length is equal
to the reciprocals of the square roots of the eigen-
values (Tsai (1999)); similarly, an inertial ellipsoid
can be obtained for the calculation of Ẍ from
equation (9) into ẌT Ẍ = 1:

ẌT Ms(Q)−T Ms(Q)−1Ẍ = 1. (11)

These equations show that the elastic and inertial
behavior of the manipulator is strongly affected
by the robot position in the workspace and by the
direction of the interaction with the environment.
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Fig. 3. Poles of the system with a constant Kp at
the increasing of the equivalent mass meq.
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Fig. 4. Poles of the system at the increasing of
the equivalent mass meq with Kp that varies
proportionally to meq.
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Fig. 5. Different positions of disk in the workspace.

5. CONSTRAINED MANIPULATOR MODEL

To understand qualitatively the influence of the
manipulator dynamic parameters on the con-
tour tracking performances, a simplified model
of the manipulator in contact with the environ-
ment is proposed. The dynamic model parame-
ters have been estimated by means of suitable
experiments. In particular, joint stiffnesses were
extrapolated by following the method proposed
in (Volpe (1990)), while the inertial parameters



were obtained using a least squares procedure
(Indri et al. (2002)). By considering the result-
ing high values of χ1 = 35 · 103 Nm/rad and
χ2 = 12.6 · 103 Nm/rad, the manipulator arm can
be considered as a rigid body, since its equivalent
stiffness in any given contact direction, calculated
as nT K(Q)n (where n is the unit vector of con-
tact direction) is much higher than the stiffness
(denoted as k1) of the vertical holder of the end-
effector. Thus, the considered model is that shown
in Figure 2. The arm is represented as a mass meq

whose position is x1 and with a force f applied to
it. A damping may be present due to friction but
the joint friction compensation term in the con-
troller (see Section 6) actually keeps its influence
low and so this term can be neglected.
The value of the equivalent mass for a given arm
configuration and direction of contact can be cal-
culated as:

meq = nT Ms(Q)n = nT J(Q)−T MqJ(Q)−1n
(12)

Since the force sensor is very stiff and rigidly
connected to the end effector, we can describe
them as a single mass m2 connected to the arm
by a spring k1 and a damping c1. The sensor is
in contact with the environment through a plastic
probe whose stiffness and damping are denoted
respectively as k2 and c2. The environment is
supposed to be perfectly stiff.
The values of the dynamic parameters of the con-
sidered model are reported in Table 1. Note that
for meq we reported the minimum and maximum
values (denoted as meq,m and meq,M respectively)
determined by considering a large part of the
workspace. Indeed, meq tends to infinite at the
limit of the robot workspace, where the two links
are aligned (i.e. a singular configuration occurs)
and therefore the limit has been reduced of 30
mm. Regarding the values of the damping terms
c1 and c2 they are very difficult to estimate and
the reasonable values of c1 = 50 and c2 = 20,
have been selected (Volpe (1990)). In any case,
changing these values do not affect significantly
the results.
Let a PI force control be applied to this system:

F (s) = Kp

(
1 +

1
Tis

)
(Fs(s)− Fd(s)) (13)

where F (s), Fs(s) and Fd(s) are respectively the
Laplace transforms of f , fs = k2x2 + c2ẋ2 which
is the measured contact force, and fd which is the
desired force set point. As an example, Figure 3
illustrates how the position of the poles of the
resulting closed-loop transfer function typically
changes when constant values of the proportional
gain (Kp = 14 in this case) and of the inte-
gral time constant (Ti = 30) are applied, whilst
the value of meq increases within its range. Con-
versely, maintaining the same value of Ti, if Kp

varies proportionally to meq (e.g. Kp = meq/3.5)
then we obtain the result plotted in Figure 4.
Although just a qualitative analysis can be been
performed using the simplified model of Figure 2

(the actual system is obviously time-variant and
nonlinear), this suggests the use of a gain schedul-
ing approach to cope with the configuration de-
pendent dynamics of the manipulator during a
contour tracking task.

6. HYBRID FORCE/VELOCITY CONTROL

The following hybrid force/velocity control law
has been initially considered:

τ = JT (Q)M0T (U(T ) + KRR) + f̂ (14)

where R = [Vt,d, Fn,d]T is the feedforward vector
based on the force and the velocity references,
KR = diag[kV,ff , kF,ff ] the corresponding di-
agonal matrix of gains, f̂ = [f̂1(q̇1), f̂1(q̇2)]T is
an available estimate of the joint friction torques
(Jatta et al. (2002)) and

U(T ) = [uPID,V , uPI,F +Kv,fb(Vn,d(t)−Vn(t))]T

where uPID,V is the tangential velocity PID out-
put, uPI,F is the normal force PI output, Vn,d(t) =
0, Vn(t) is the velocity of the end-effector in the
normal direction and Kv,fb is a proportional gain.
Note that the use of a normal force derivative term
has been substituted with a normal force velocity
feedback loop (Craig (1989)).
An extensive experimental campaign has been
made to find out the dependence of the contour
tracking performances on the configuration and
on the contact force direction. In particular, a
metallic disk with a diameter of 60 mm, placed in
different positions along the y-axis with increasing
distance from the origin, has been tracked by em-
ploying the control law (14) with a standard force
PI controller. The normal force setpoint was 20 N,
while the tangential velocity setpoint was 5 mm/s.
The relatively small diameter of the piece, com-
pared to the manipulator size, allows the study of
the effect of the force direction variation only, be-
cause during the path following the manipulator
configuration does not change significantly while
the contact force makes a complete revolution.
The positions of the disk in the robot workspace
and the corresponding robot configurations are
reported in Figure 5. Figure 6 shows in the left col-
umn the inertial ellipsoids calculated from equa-
tion (11) for the disk in different positions and in
the central column the normal force error collected
during the tracking of the disk (in the clockwise
direction, starting from the point indicated by a
small arrow). Note that only the last three disks
have been considered since the results for the first
two disks are very similar to the third one. The
normalized force error has been plotted on the
path reconstructed using the forward kinematics.
Comparing these figures it is possible to recognize
that, in general, the zones that present low equiv-
alent mass in the contact force direction match
with the zones where large and rapid force error
oscillations occur. This can be explained consid-
ering that the proportional gain has been tuned
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Fig. 6. Inertial ellipsoids (left column) and normal force errors obtained with a standard PI controller
(central column) and with the gain scheduling approach (right column) for different disk positions.

for a medium value of the equivalent mass and
as the value of meq decrease the (corresponding)
too high value of Kp tends to reduce the damping
of the system. Actually, as the robot end-effector
get closer to the limit of the workspace, i.e. for
positions 4 and 5 of the disk, indeed the force
error amplitude in some configurations reaches
values that might yield to the loss of the contact.
Detuning the (constant) proportional gain brings
a reduction of oscillations but makes the robot to
detach where the equivalent mass is higher.
The previous results motivates the use of a gain
scheduling approach in the force PI controller,
i.e. the adoption of a time varying proportional
gain (the integral time constant is maintained
constant). The value of the proportional gain Kp

is allowed to vary in a given interval whose end-
point values Kp,min = 0.005 and Kp,max = 0.13
have been chosen with an extensive trial-and-error
procedure in such a way that they are appropriate
(constant) values for low and high equivalent mass
respectively (note that the original Kp was equal
to 0.03).
Thus, the value of the proportional gain Kp of the
force PI controller depends proportionally on the
equivalent mass meq in the contact force direction,
according to the expression

Kp = Kp,min + (meq −meq,m)
Kp,max −Kp,min

meq,M −meq,m
.

7. EXPERIMENTAL RESULTS

The gain scheduling approach has been tested by
repeating with the modified controller the same
experiments of Section 6. The normalized force
errors have been plotted on the path reconstructed
with forward kinematics in Figure 6 (right col-
umn). A clear improvement in the performances
obtained by employing a gain scheduling approach
appears. Actually, comparing the results, it can be
seen that high amplitude force oscillations disap-
pear in the zones with low equivalent mass and
no significant variations in the performances are
noticed in the other zones.
To test further the performances of the new con-
troller a wooden piece of a very complex shape
has been tracked. The shape covers a great part
of the manipulator workspace and presents con-
vex and concave curves (see Figure 7 where the
stiffness ellipsoids are plotted along the path).
The tangential velocity setpoint is 20 mm/s and
the contact force setpoint is 20 N. The piece was
tracked in the counterclockwise direction. The
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Fig. 7. Inertial ellipsoids for the piece with a
complex shape.
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Fig. 8. Normalized force errors during the contour
tracking of the complex shape.

contact force error plotted on the reconstructed
path is plotted in Figure 8. It has to be stressed
that without the use of a gain scheduling it was
not possible to accomplish the task due the nu-
merous losses of contact. The normalized value of
the proportional gain of the force PI controller
(scheduled) proportional gain depending of the
contact point is plotted in Figure 9. Summariz-
ing, it results that, despite high performances are
achieved with the original controller when the
(unknown) piece to track is situated in a large por-
tion of the workspace, this portion is significantly
widen by employing the devised gain scheduling
approach. A video of the experiment is available
at robotics.ing.unibs.it/gs.htm.

8. CONCLUSIONS

In this paper we have shown that the use of a gain
scheduling approach can significantly improve the
performances achieved by a hybrid force/velocity
controller in the contour tracking task of an un-
known piece performed by an industrial robot
manipulator. In particular, the adoption of a time-
varying proportional gain of the normal force PI
controller allows to enlarge the portion of the
workspace area that can be employed by the robot
and therefore to obtain similar performances for
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Fig. 9. Normalized values of the (scheduled) pro-
portional gain plotted on reconstructed path.

different tasks which is a fundamental prerequisite
for applications in the industrial context.
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