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1. INTRODUCTION

This paper addresses the data-driven design of
fault detection and isolation (FDI) systems. It is
assumed that the processes under consideration
can be modelled as an LTI system described by

xz(k+1) = Az(k) + Bu(k) + w(k) (1)

y(k) = Cx(k) + Du(k) + v(k) (2)

where z(k) € R, u(k) € R}, y(k) € R™ denote

the vectors of the state variable, process inputs

and outputs, respectively. w(k) € R, v(k) € R™

are assumed to be discrete time, zero-mean, white
noise satisfying

Ew(k) = 0, Ev(k) = 0
o[zt o)< 8 3
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and statistically independent of the input vec-
tor w(k). It is assumed that system matrices
A, B,C,D and system order n as well as Q, R, S
are unknown a priori.

During the last two decades, observer based FDI
methodology for LTI systems has been well estab-
lished and a great number of standard methods
are available for designing an observer based FDI
system if the system matrices A, B, C, D are given
(Chen and Patton, 1999; Gertler, 1998; Patton et
al., 2000). Tt is a reasonable and convincing argu-
ment that there exist powerful tools for identifying
the system matrices, especially thanks to the sig-
nificant development of the subspace methods in
the last decade (Favoreel et al., 2000; Van Over-
schee and De Moor, 1996). From the viewpoint
of application, the procedure from (test) data to
the design of an FDI system consists of two steps:
(a) modelling, i.e. identifying A, B, C, D and n (b)
FDI system design based on A, B, C, D and n.



In this paper, a procedure from the (test) data
directly to the FDI system design is proposed. In
this procedure, the residual generator, instead
of A, B,C, D and n, will be directly identified
from the test data. The major advantage of
this design method is that the design procedure
is simplified and no special knowledge of control
theory is needed for the design of observer or
parity space based residual generators.

This study is strongly motivated by the success-
ful application of the so-called PCA (Principal
Component Analysis) in process industry (Dunia
et al., 1996), where FDI is achieved based on
the identification of the process principal com-
ponents directly from the test data. Some re-
cent results demonstrate that FDI in dynamic
systems can also be realised by means of Dy-
namic PCA (Li and Qin, 2001). A further mo-
tivation of this study is the intimate relation-
ship between the subspace methods and parity
vectors which was pointed out, for instance, by
Basseville in (Basseville, 1998) and more recently
in (Basseville, 2003).

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, the following data struc-
ture will be used:

u(k — sp) u(k)
up(k) = : sup(k) = :

L u(k—1) u(k + sy —1)

[y(k — sp) | y(k)
yp(k) = : yp(k) = :

L y(k—1) | y(k+sp—1)
Yy(k) = [yp(k) yplk+1) - yp(k+ N —1)]
Up(k) = [up(k) up(k +1) -+ up(k+ N —1)]
Yi(k)=[ys(k) yp(k+1) -+ yp(k+ N —1)]
Up(k)=[ug(k) up(k+1) - up(k+N—1)]
a0=g| 0= 3R]

where the subscripts p, f denote, respectively, the
past and the future (data), and sp, sy stand for
some integers with s,, sy > n.

A straightforward calculation based on system
model (1)-(2) leads to the following input-output
matrix equation which is standard in the frame-
work of subspace identification (Favoreel et al.,
2000; Van Overschee and De Moor, 1996):

Yy (k) :FSfX(k) + HSfo(k) + GSfo(k) + Vi (k)
X(k:):[:c(k) I(k}+N*1)] 4)
Vi(k)=[vg(k) - vp(k+ N —1)]
Wy (k) = [wy(k) -+ wp(k+N—1)]

v(k) w(k)
vy (k) = : Wi = :
_v(k:JrSf—l) w(k+sp—1)
0 0 -0 C
c 0 ---0 CA
GSf: : aFSf - :
| CA% 2 C o CAs !
r D 0 --- 0
CB D -0
HSf: . -. .. .
| CA* 2B ... CB D

(4) is the model used in the sequent sections.

Parity space and observer based FDI schemes
(Chen and Patton, 1999; Gertler, 1998; Patton
et al., 2000) are two well-established techniques.
On the assumption that A, B, C, D are known, the
design of a parity space based residual generator
consists in the solution of equation

Qg s—1 ] (5)

for the so-called parity vector oy € R ™3 where
I's is identical with I's, (replacing subscript sf
by s), while the design of an observer based
residual generator is achieved by solving the so-
called Luenberger equations,

o'y = 07 as = [as,O Qg1 -~

TA—-AT=LC,B,=TB—-LD (6)
c.T+gC=0,d,+gD =0 (7)
for A, (should be stable), B, c,,d, g, L together

with the transformation matrix 7. It follows then
the construction of residual generators

r(k) = as (ys(k) — Hsus(k)) (8)
ylk—s—+1) u(k—s+1)
ys(k) = : Jus(k) = :
y(k) u(k)

for the parity space based residual generation and

z(E+1)=A,z(k)+ B.u(k) + Ly(k)  (9)
r(k) = c.2(k) + gy(k) + dzu(k)  (10)
for the observer based residual generation, where

H, has the same definition like H,, and r(k) is
called residual signal.

3. IDENTIFICATION OF PARITY SPACE

As shown in (8), for the construction of a par-
ity space based residual generator as,asH, are
needed. Note that for s = s7, oy € Fj‘f and
asHs € FSLf Hy, with Fslf denoting the null space

of st. Thus, identification of FSLf, FSLf Hs, would



allow a direct construction of a parity space based
residual generator. In this section, an algorithm
is proposed for the identification of FSLf,FSLIHS r
directly. It is similar to the subspace method re-
ported in (Wang and Qin, 2002).

It follows from (4) that

Zzz ) = | T T | |30 zr e
. [Gsfwf(ko) + vf(k)] 270

Recall that lim ~ (Gs, Wy(k) + Vy(k)) ZL (k) =
0. Thus, for large N

[ ]

By selecting Us(k), Up(k) in such a way that

N
=
N
~
=
l

rank (ZfZg) =rank (Zy)

ran 2y =i [T 7| [0

s, Hs,
1

—rcmk[ 0 ]—n-i-Sfl

the following relations hold

rank (Zfl) = rank (FSLf) =sm—n

Is, Hs,
0 I

:ZJ%{ =0 (11)

Now, do an SVD on Z;(k)ZZ (k),

p

by 0
T z,1 T
22y =U. |7 22,2} v

with unitary matrices U, € RUFm)srx(tm)s; T ¢

R(mHDspx(m+)sy Quppose that ¥, » = 0 and thus

s, Hs,

rank (X, 1) = rank [ o7 ] =n+ syl

It leads to
Zy=[0P|U!

where P € R"™" 5 = sym — n, is an arbitrary
regular matrix. Let

Uz _ |:U2,11 Uz,12:| 7Uz I c R7n5f><(5fl+n)
2,21 U2,22 ’

lspx T xXms
UZ,QQ eR™/ anz,IQ eR" !

It then turns out

Zf = PUL, ULy € Ry
=Ty, = PUL 5, Ty Hy, = —PU5,(12)
The following algorithm summarises the major
steps to the identification of FSLf,FSLf Hg, :
S1: Generate data sets Zy(k), Z,(k);

S2: Construct Zy(k)Z! (k) and moreover do an
SVD on Z; (k) Z} (k);
S3: Find Uglg, UT,Q? and select P;

S4: Compute I't FSLfH according to (12).

sy sf

4. RESIDUAL GENERATOR DESIGN BASED
ONTE, I Hs,

In this section, residual generator design based on
Fj‘f,Fj‘f H;, will be studied. Since the design of
parity space based residual generator is straight-
forward, the major focus is on the design of ob-

server based residual generators.

4.1 Design of parity space based residual generators
Having identified Fj-f , Fj-f Hs,, the construction of
a parity space based residual generator is straight-
forward. Suppose that ay, € FSLf,OchHSf c
FSLf H,,, then following (8) the corresponding
residual generator can be built as follows:

r(k) = as,ys, (k) — as, Hs us, (k) (13)
It is worth emphasising that residual generator
(13) is designed only based on the parameter ma-
trices identified using test data. No knowledge
of the process model is needed. Remember that
for the identification purpose sy could be se-
lected significantly larger than n, the order of the
process under consideration. For the purpose of
achieving a reduced order residual generator, one
can use an algorithm similar to the well known
Gaussian (elimination) algorithm (Gantmacher,
1986). First, find a regular matrix P; so that in
matrix

Qi - 541,Sfm_
Py = :

Qpa v Qspm |
Qy,s,m 7# 0. Now, let

B @l,s m |
10 —
an,Sfm
p=|0 _
. QAp—1,s;m
-1 — 7_7 f
Qn,spm
_0 -0 1 |

It turns out that [0 -+ 0 &n,sfm]T is the last
column of P, Py ij. Repeating this procedure will
lead to

TREREE &in 0
1
PTS, =
Q.1 Q5 pm
where P is the product of all regular matrices
Pi=1,---.Let & = [&y1 -~ &, ], then

r(k) = a1y (k) — a1 Hyup (k)



is a residual generator of the m-th order, where
un(k)a yn(k)v H,, are equal to Us, (k)’ Ysy (k)v HSf )
respectively, for sy = n. It is worth pointing out
that the minimum order of the parity vectors
is the minimum observability index (Ding et al.,
1999), which can be much smaller than n.

4.2 Design of observer based residual generators

In this subsection, the problem of designing
an observer based residual generator based on
rs FJ- Hs, will be addressed. To this end, the

Sy Y
followmg theorem is first introduced.

Theorem 1. Given system model (1)-(2), parity
vector a, = [Oés,o Qg1 - 04575_1] , then

00 -0 a0
10 -0 s
0.~ 10 Qaaed
c. = [0 --- 0 1] eR*tg= —vs 51
[ Qg1 Qg2+ Qg1 Qg 51 c
aS,Q PR PR a8,571 0 CA
T= . . . i
| Q51 0 - .- 0 C A2
B.=TB - LD,d, = —gD (15)

solve Luenberger equations (6)-(7).

The proof is straightforward and is, due to the
space limitation, omitted here. Note that

TB—-LD =
Q5,0 Qg1 Qs 2 s 5—1 D
Qs 1 Qs 2 Qs 51 0 CB
As s—2 g 5—1 0 T 0 CA? 2B
Moreover,
D
CB
I:Oés,i As i1 = Qg 51 0--- 0]
CA*?B

can be re-written into a;H, ;41 with

‘ T
Hyi=[0---0D" (€B) .- (CA='B)" |
As a result,
asHs,l
asHs,Q
Bz = dy = OésHs,s~ (16)

asHs,s—l

Thus, it follows from Theorem 1 and (16) that
a residual generator of form (9)-(10) with A,,c,

defined in Theorem 1 can be constructed based on
as, € st, asHs, € FSLIHSI. Note that this resid-
ual generator is open-loop structured, although it
is given in a recursive form, and moreover its poles
are fixed at the original. To achieve additional de-
sign freedom and a closed-loop structure, residual
generator (9)-(10) is now modified by feeding back
the residual signal r(k) to state equation (9), i.e.

z2(k+1)=A.z(k) + B.u(k) 4+ Ly(k) — Lor(k)
r(k) = c.z(k) + gy(k) + d.u(k) (17)
where Lg is the so-called observer gain and pro-
vides designers with additional degree of design
freedom. Suppose that the process model (1)-(2)

is extended by two additional terms, f., fs, to
represent component and sensor faults as follows

x(k+ 1) = Az (k) + Bu(k) + w(k) + f.(k)
y(k) = Ca(k) + Du(k) + v(k) + fs(k)

then the dynamics of residual generator (17) is
governed by

e(k +1) = (A, — Loc:) e(k) + w(k) + fo(k)
r(k) = —c.e(k) + gv(k) + gfs(k) (18)
w(k) =Tw(k) — (L — Log) v(k)
fe(k) =T fe(k) — (L — Log) fs(k)

Note that
I 00 —ly
Iy 10 —ly
for Lo=| . |,A.—Lgc. = .
ls—1 0--- 1 =l

Thus, the eigenvalues of A, — Lgc, are arbitrarily
assignable.

In practice, in order to achieve a successful FDI
a bank of residual generators will be used for
the purpose of residual generation. To this end,
a set of vectors selected from I't ,FSLfHS , are
needed. For instance, for f. = 0 an isolation of
sensor faults can be achieved by using a bank
of m residual generators constructed as follows.

Suppose that

FsL = [Fsto Fst1 o FSLfo 1

Solve equations
PFj‘fJ—dzag( nJ,afL,j,--- o), =0,---,n—1
Pry, ;=0j=n,--,s5—1 (19)
for P € R™ ", where an],z =1,---,m are some
nonzero constants. Let

D1

P=|: |,d, = plfsf, i=1,---,m
Pm



Then, a bank of m residual generators in form of
(17) can be designed by using Theorem 1. The
order of these residual generators will not exceed
n, and each of them can be described by

qu +1) = AL (k) + Blu(k) + L'yi(k) — Ly (k)
2" (k) + g'yi(k) + diu(k)
(k) + Diu(k) + vi(k) + fsi(k)

(k) = Cix(
ol HS afl’o
aLi = - :
a, HSf sp—1 O‘it,n72

Z :791D177’:17 , M

nn 1 z

whose dynamics is governed by

e'(k+1)= (AL — Lict) e' (k) + Tw(k) —
(L' = Log)vi(k) — (L' = Lyg) fs,a(k)

(k) = —cie'(k) + g'vi(k) + 9" fs.i (k)
It is evident that each residual generator is only
influenced by one sensor fault. Indeed, the basic
idea behind this scheme is that each residual
generator is driven by only one output signal and
thus the generated residual signal will only be

influenced by one sensor fault. This also proves
the solvability of eq.(19).

In order to isolate component faults, which can
be generally formulated as f. = Ef., an identifi-
cation of matrix Fj-f Hy, s, is needed, where

0 0 --- 0

CE 0o ---0

ch’sf . . c. .
CA*'2E ... CE 0

This can be achieved using the same procedure
like the one of identifying I'; L Hs,

5. DESIGN OF KALMAN FILTER BASED
RESIDUAL GENERATORS

In the former section, an approach to the design
of observer based residual generators has been
presented without considering the influence of
process and measurement noises. In this section,
an approach to the design of Kalman filter based
residual generators will be developed, which are
knowingly powerful to solve FDI problems for
processes with strong process and measurement
noises.

Recall that given a; € FSLf a residual generator of
form (9)-(10) can be constructed, whose dynamics
is governed by

e(k+1)=Ae(k) +Tw(k) + Lv(k) (20)
r(k) =—cze(k) + gv(k) (21)

Thus, if
m ([ e 1) = [V v s
is known with
@(k) = Tw(k) + Lo(k), 5(k) = gv(k)

Voo =TQTT + LRLT +TSLT + LSTTT
Vas =TSg" + LRg", Viz = gRg”

then the following residual generator

z(k+1)=A,z(k) + B.u(k) + Ly(k) — Lor(k) (22)

r(k) =c.2(k) + gy(k) + d.u(k) (23)

Lo=—PR ' % =A.2AT - PR'PT 4+ Vg
P=Vgs — A5 R =c.%c! 4+ Vi

would deliver a white residual signal r(k) (inno-
vations sequence) with

E (r(i)r" (7)) = (c23cZ +gRg") 65

For this reason, the identification of Vi3, Vas, Vaw
is the major focus of this section.

For the purpose of real application but without
loss of generality (see also the discussion in Sub-
section 4.1), it is assumed that there exists as =
[as,o 045,571] € R? so that

0] ely,

with s << sy, sp. Below, the problem of identi-
fying Vs, Vas, Vaw for given ag, asHg as well as
Ur,Yr,Up, Y, will be outlined in the form of an
algorithm.

aS: [as 0...

Stepl: Generate data set:
. 1 .
U(k+i) = ¥ [as —a.Hy | Zy,o(k +14) Z) (k)

fori =0,---,s—1, where Z; ;(k + i) denotes the
first s rows of Z¢(k +1). It leads to, according to
Theorem 1 and egs.(20)-(21),

0--- 01
Cz
c AS72 01 :
10 -0
1
U= (T.E(k) + Gs—1Wy,s—1(k) + Vi s—1(k)) Z}
Uy = [OT(k) - T (k+s-2)]"

=[e(k) - e(k+N-1)]
Wf,s 1(k), V},s—1(k) denote the first s — 1 rows of
Wy (k), Vi(k) respectively. Note that

1
N

1
= Uy, o~ NFZE(k:)ZpT(k)

(Goo1 Wy 1(k) + Vi 1(k)) Z1 (k) =0



Step 2: Compute E(k), E(k+ 1) as follows
E(k) =T "W, E(k +1) =T, 01 Ppyy

where @, @)1 are the pseudo-inverse of Z! (k) /N,
ZI'(k +1)/N respectively;

Step 3: Compute

W=E(k+1)— A.E(k)
V= [as —aSHS] Zs (k) + c.E(k)
Step 4: Compute
V"D = _‘_/T/N, Vw{) == i ‘_/T/N, VTIMI) = WWT/N

It is worth pointing out that some of subspace
methods also deliver a sequence of state estimates
that can be interpreted as the solution of a bank of
Kalman filters (Favoreel et al., 2000). The major
differences between the Kalman filters implicated
in the subspace methods and the Kalman filter
based residual generator (22)-(23) lie in: (a) in
(22)-(23), z(k) = Txz(k), instead of z(k), is es-
timated. The order of the Kalman filter (22) s
can be much smaller than n (Ding et al., 1999).
(b) The estimator (22) will be computed on-line
and recursively aiming at generating the residual
signal.

6. CONCLUDING REMARKS

In this paper, an approach to data-driven design
of parity space, observer and Kalman filter based
residual generators has been introduced. The ba-
sic idea behind this approach is the identification
of parity space using the test data. This allows a
direct design of parity space based residual gener-
ators. Moreover, based on a relationship between a
parity vector and an observer based residual gen-
erator, data-driven design of observer and Kalman
filter based residual generators is also realised.

An FDI system consists of two parts: residual
generation and residual evaluation. Due to the
limited space, only the part concerning residual
generation has been presented in this paper. In the
context of residual evaluation study, both model
uncertainties and noises have to be taken into
account. For the case that only noises are present,
the residual evaluation is trivial. One can use,
for instance, standard methods for the evalua-
tion of the innovations sequence generated by the
Kalman filter based residual generator (22)-(23)
(Basseville and Nikiforov, 1993). For the evalua-
tion of residual signals generated by parity space
based residual generator (13), E (r(k)r’ (k)) will
be additionally computed using standard statisti-
cal methods. The residual evaluation follows, for
instance, methods introduced in (Basseville and
Nikiforov, 1993; Hagenblad et al., 2002).

The developed approach has been successfully
applied to some academic examples. Due to the
long data sets, they cannot be included in this
paper. It is also planned to test this approach on
some well-defined benchmark processes.
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