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Abstract: The problem domain in this work is a three-dimensional simulation of
an underwater vehicle (AUV) that must navigate through obstacles towards a
stationary goal point. The AUV has a limited set of sensors, including sonar, and
can set its speed and direction each decision cycle. We wish to learn a strategy
that is expressed as a set of reactive rules, (i.e. stimulus-response rules) that map
sensor readings to actions to be performed at each decision time step. Note that
the system does not learn a specific path, but a set of rules that reactively decide
a move at each time step allowing the vehicle to reach its goal and avoid the

obstacles. Copyright 2005 IFAC
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1. INTRODUCTION

Manoeuvring through obstacles such as mines is
one of many important capabilities or behaviours
of autonomous underwater vehicles. One way to
produce robust behaviour is to perform projective
planning. However, real-time performances is of-
ten a critical requirement for many of the capabil-
ities needed in autonomous vehicles. Reactive sys-
tems, where stimulus-response rules drive the be-
haviour of the vehicle, can achieve real-time per-
formance and can perform well in a wide variety
of situations. An interesting and challenging prob-
lem is how to develop or obtain the rules for these
reactive systems. In previous work, FuzzyMod®,
a learning system based on ID3 algorithm, was
used to learn classification problems (Otto and
Wernstedt, 2002). In this work, FuzzyMod® is
used to learn high-performance reactive strategies

for navigation and collision avoidance. This task
domain requires an AUV to navigate through a
randomly generated, dense obstacle field and then
rendezvous with a stationary object. The AUV
has a limited set of sensors, including sonar, and
must set its speed and direction each decision
cycle. The strategy, or plan, that is learned is
exposed as a set of reactive rules (i.e. stimulus-
response rules) that map sensor readings to ac-
tions to be performed at each decision time step.
Simulation results demonstrate that the AUV can
navigate through a randomly generated, dense
obstacle field and reach a given goal.

2. APPROACH TO LEARNING STRATEGIES

In response to the knowledge acquisition bottle-
neck associated with the design of expert systems,



research in machine learning attempts to auto-
mate the knowledge acquisition process and to
broaden the base of accessible sources of knowl-
edge. The choice of an appropriate learning tech-
nique depends on the nature of the performance
task and the form of available knowledge. If the
performance task is classification, and a large
number of training examples are available, then
inductive learning techniques can be used to learn
classification rules. If there exists an extensive
domain theory and a source of expert behaviour,
then explanation-based methods may be applied
(Ramsey, 1998). Many interesting practical prob-
lems that may be amenable to automated learning
do not fit either of these models. One such class
of problems is the class of sequential decision
tasks, there exists neither a database of examples
nor a complete and tractable domain theory that
might support traditional machine learning meth-
ods. In these cases, one method for automatically
developing a set of decision rules is to manually
collect data using a simulation model of the task
environment, and then to use inductive learning
techniques to learn the classification rules.

The approach described here reflects a particular
methodology for learning via a simulation model.
The motivation behind the methodology is that
making mistakes on real systems may be costly,
dangerous or in this case the real system was not
yet existent. Since learning may require experi-
menting with tactical plans that might occasion-
ally produce unacceptable results if applied to the
real world, we assume that hypothetical plans will
be evaluated in a simulation model (see Figure 1).

Previous studies have illustrated that knowledge
learned under simulation is robust and might be
applicable to the real word environment if the
simulation is more general (i.e. has more noise,
more varied conditions, etc.) than the real world
environment.

3. SYSTEM DESCRIPTION

The main objective of the experimental system for
the expert to drive through obstacles in a virtual
reality environment, while collecting data. This
data is then used for teaching the controller to
learn the behaviour of the expert. After learning,
the mimic controller will then be able to drive the
AUV independently in an unknown environment.

The experimental setup for data collection and
testing purposes is illustrated in Figure 2. The
model can be driven in two modi, one for data
collection (switch F1 is connected to C) and the
second mode is for testing the designed controller
(switch F1 is connected to T). As can be seen
the simulation setup is composed of four com-
ponents, namely: (1) Data preparation module

(DPM), (2) Mimic controller or Fuzzy Inference
System (FIS), (3) Expert, (4) The AUV and its
Environment. The above mentioned components,
including the data collection and the learning
processes will be explained in detail in the next
section.

4. DATA PREPARATION MODULE

This module is required to convert absolute auv-
state-variables (i.e. absolute position, orientation,
sonar parameter, etc) to relative variables (i.e.
distance to goal, goal bearing, distance to obstacle,
obstacle bearing, etc) (see Figure 5a). This dras-
tically reduces the amount of experiments to be
performed for data collection. We assume that the
AUV knows its own position with some margin
of error, and that the position of the stationary
target is known. The AUV also has some internal,
or virtual, sensors that give the AUV certain infor-
mation about its own state. The sensors required
to optimally control the AUV are: range, speed,
goal bearing, last turn and active sonar cell.

The DPM process the data in two steps. First
of all the distances and the directions of the sur-
face points (anerw) are calculated from the inputs,
which include the obstacle position (zp,yn, z1),
the AUV position (z, y, z), a division angle (angx),
obstacle radius (r,) and obstacle height (hy,) as il-
lustrated in Figure 3. This is done in the following
procedure: Points on the surface of the obstacle
are selected systematically using angx and then
for each selected point on the obstacle the distance
and its direction relative to the AUV (a., a,) are
calculated. In the next step the sonar view area
(see Figure 4) is divided in cells (1-24) and for
each selected point on the surface of the obstacle
the distance and its direction relative to the AUV
(as, ay) are calculated and if this direction lies
in the sonar cell(i) then the minimum distance of
the selected points is assigned to this cell. If no
obstacle lies in the direction of the sonar cell then
this cell is assigned the maximum value of 220.

Figure 4 (b and c¢) shows the results of the system
for two examples, when the obstacle is positioned
right in front and on the left of the AUV, respec-
tively. The diagrams show the minimum distances
of the obstacle in the respective cells.

5. MIMIC CONTROLLER AND DATA
COLLECTION

To imitate the behaviour of an expert a mimic
controller is required. The mimic controller used
here is based on a fuzzy inference system. That
means it includes functions for fuzzification, in-
ference and defuzzification. The controller is com-
posed of the inputs and outputs as illustrated in
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Fig. 2. Experimental setup for data collection and testing purposes

Figure 5b. As the controller is based on a fuzzy
system it requires a rule base. The rule base is
generated automatically from data samples using
FuzzyMod® as will be shown in the next section.

The training/validation data will be collected
from a series of experiments. Each experiment
consists of reading a number of samples from sen-
sors on the AUV while it is placed in the simula-
tion environment. The AUV will be moving during
each experiment. The data read from the sensors
during an experiment will be stored in files. After
the experiment is completed, software on the com-
puter will be used to convert the data into a form
that can be used for training/validating the mimic
controller. The objective of each experiment is to
collect data from sensors that represent a specific
state of the auv’s world. The primary parameters,

whether to turn to the left, right, down or upwards
and at what speed when an obstacle is detected, is
what is wished the mimic controller to learn. Here
are the parameters to be varied in each experi-
ment, and a brief explanation for each parameter
on how it will be implemented in the experiment:
relative obstacle position, obstacle distance, goal
position.

In all experiments the AUV will be controlled
by an expert using a joystick. It is recommended
that the expert have only the sight of the sonar
view area, i.e. the expert can only see what the
AUV can see and no extra information, so that
the sensors used by the mimic controller will be
the same as those used by the expert. When data
is collected it can then be used for teaching the
mimic controller offline using FuzzyMod®.
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6. RULE GENERATION USING and
FUZZYMOD®

FuzzyMod® is a tool developed at the TU-
Ilmenau for generating fuzzy rules from training
data samples (Dung and Otto, 1997). Herewith,
the control actions made for different manoeuvre
situations by an expert in the virtual world were
generalized in the form of IF - THEN rules, so
that they can be used in the future, in order to
make an autonomous guidance of the vehicle in
the real world in similar situations.

The decision behavior of an expert and the static
and/or dynamic behavior of systems can be de-
scribed by the following equations:

(1)

y = f(ula u2au37 7un)

u(k —1),...,u(k —n))

where y is the output and ul, u2,u3,,un are the
inputs of a static MISO-system, y(k) is the output
and y(k—1),,y(k—m),u(k—1),,u(k —n) are the
sampled output and input values of a dynamic
SISO-System and f is a nonlinear function. The
functional dependencies in equation (1) and (2)
can be expressed in form of rules, if the input
and output values of the system are described by
linguistic attributes as a function of the measured
values. In principle, there are two ways to deter-
mine the attributes for the inputs. In the first ap-
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proach, the attributes are determined by dividing
the entire range of the process inputs and outputs
into a given number of n equal intervals. In the
second approach only the output is divided into
equal intervals, while a machine learning method
optimally specifies the attribute borders for the in-
puts. For the fuzzification of the process variables,
triangular membership functions are assigned to
the intervals in such a way that they intersect at
the interval borders by m = 0.5. The edge intervals
get one-side open membership functions. Thus, a
measured value with different membership values
belong to two intervals. The measured values are
then transformed according to the fixed intervals
into linguistic attributes, so that a description of
the static and/or dynamic expert and/or process
behavior in form of linguistic expressions results.
The ID3-algorithm (Quilan, 1992) generates an
optimal decision tree from the linguistic examples.
Production rules of the form:

IF(ul =vs&u3 =b)THENy =m
IF(y(k—1) = vb&u(k—2) = s)THENy(k) = vub,

which describe the static or dynamic system/expert
behavior, can then be derived from the decision
tree. The decision tree is built in such a way
that the information content of the attributes for
the decision-making process drops with increas-
ing depth and the irrelevant attributes remain
unconsidered. After starting the procedure with
a primary configuration, the generated fuzzy sets
are linked in the rules, and the latter are then
checked for their ”correctness” (mean informa-
tion content). After this the fuzzy sets are opti-
mized using Genetic algorithms so that the mean
squared error between model and system output
is minimized.

7. FUZZY INFERENCE SYSTEM FOR THE
MIMIC CONTROLLER

To simplify learning, data was generated for 3
different modules, module responsible for nav-
igating the AUV to goal, module for avoiding
obstacles and the other module for calculating
the required speed. For the module to go to goal
only two input variables are required, goal bearing
and distance to goal. For the module for obstacle
avoidance only the sonar cell distance values are
required as inputs and for the module responsible
for speed only the distance to obstacle, distance
to goal and the previous speed are required as
inputs. In every step if an obstacle is detected the
module for obstacle avoidance is activated and if
there is no obstacle registered by the sonar cells
the go-to-goal module is activated and in either
case the speed is calculated by the speed module
accordingly. After learning and validation using
FuzzyMod® the mimic controller was then used
to replace the joystic (expert) and the results
illustrated in the next section were obtained for
several unknown environmental situations.

8. RESULTS

The simulation with the AUV-Model for Matlab®,
developed at the TU Ilmenau, shows the results
illustrated in Figure 6 and 7 for selected environ-
ment scenarios. The tracking trajectories obtained
with the control system show reactive obstacle
avoidance. The obstacles were positioned, so that
they represent a number of situations, which can
occur in the real world environment.
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9. CONCLUSION

A manoeuvre management system based on fuzzy-
rules was presented. The management system
learns from an operator by induction using ID3-
Algorithm. This can be done offline or online.
Simulation results show the performance of the
manoeuvre management system in an unknown
environment. Now the system has been tested
successfully in the real AUV.
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