

RANDOM START AND FORWARD SEARCH APPLIED TO SOLVE MULTI-CRITERION
PLANNING PROBLEMS

Dang Thanh Tung(1), Baltazár Frankovič(1), Con Sheahan(2), Ivana Budinská(1)

(1) Institute of informatics, Slovak academy of sciences, Dubravska 9, Bratislava 84507, Slovakia
(2) Dept. Of Manufacturing & Operations Eng., University of Limerick, Limerick, Ireland.

Email: utrrtung@savba.sk

Abstract: This paper deals with multi-criterion planning problem. Beside traditional
constraints, we assume that tasks can migrate between resources and they are executable
by many methods with different results. The random start & forward search algorithm is
proposed to solve the mentioned problem, in condition, the time for solving is limited.
Copyright © 2005 IFAC

Keywords: planning, multi-criterion optimization, forward search.

1. INTRODUCTION

Planning in manufacturing belongs to the category of
complicated problems. Beside the complication
caused by the task structure, there are another
problems related to individual resource’s limitation
or personal requirements. In addition, the main
criterion of solving many planning problems is not
only to find a plan with the minimal production time,
but also to find such a plan with minimal production
cost, maximal quality or utilization of each resource,
etc. This paper focuses on proposing a new method
for resolving multi-criterion planning problems
based on heuristic search.

2. PROBLEM DESCRIPTION

Planning problem in this work is understood as
follows: There is a set of tasks S0={Task1,..,Taskm},
each of them is executable by several alternative
ways with different results.
The task structure is specified clearly for each
planning problem. Each task has a set of predecessor
and successor tasks, whose execution is associated
directly with its execution. A task that does not have
a predecessor (or a successor) is called a starting (or
ending) task, respectively. Each planning problem
can have a number of stating and ending tasks.
Next, there are a number of resources (equivalent or
different) for executing these tasks. Each task is
executable in several resources (in a special case,

each task is executable in whichever resource). Let
us assume that all tasks are uninterruptible during
execution and one resource can perform only one
task at any time.
For each Task, let us denote Me(Task) as a set of
executable methods for performing this task. Q(Task,
method, input) is a multi-optional function {Task ×
method × input_data} rR describing the quality
of the obtained result after executing this Task, by
using the method method∈Me(Task) and the input
data input. A variable input involves necessary data
for executing this task, which might be gathered from
the external environment or from executions of other
tasks connected with this one. The set rR is an r-
dimensional set of real numbers representing r types
of criteria, which are used to assess a task’s
execution. Three usual options for assessing a task’s
execution are cost, duration and quality. Cost of a
task describes the financial or opportunity cost
inherent in performing the task. Duration describes
the amount of time that a method will take to execute
the task. Quality describes the "goodness" of
performing the task. Of course, different applications
have different notions of what corresponds to model
quality. For example, a quality might include
accuracy, speed or completeness of a task result, etc.
Each planning problem is associated with many
constraints, e.g. deadlines, limited capacities of
resources, predefined quality, etc. Moreover, in order
to assess different plans, a common criterion function

is defined. This function is usually multi-parameter
function and it has not measurement.
The main objective is to find such a sequence of
performing given tasks in order to satisfy all defined
constraints and simultaneously to minimize the
predefined criterion function.

3. PLANNING AS HEURISTIC SEARCH

It is known that planning problems could be solved
by two basic manners. The first kind of methods
constructs the global plan by successively adding
new tasks to the already examined part. The initial
set of tasks is divided into a number of portions and
in each phase one of these portions is added to the
already examined set of tasks. This method requires
recording all intermediate results for future
calculation. As a result, the process solving requires
exhausting work and the space demanded for
backing up information might grow considerably
when the amount of tasks is great.
The second manner is to improve the current plan.
The process starts with any initial plan. In order to
satisfy required criteria this plan is re-constructed,
until it satisfies the desired requirements. Here, the
essential difficulty is in selecting a part of the current
plan to repair. However, theoretically, not
necessarily this process brings better solutions.
Beside that, the complexity of this approach is the
same as in the previous one, if solver wants to ensure
the optimality of the achieved solution. The
difference is this method could provide a solution at
any time. Therefore, it is appropriate to solve
problems that do not have fixed deadlines. Due to the
main advantage of the second method that allows
providing a final solution at any time, the method
presented here is built in this principle.

4. RANDOM START AND PLAN REPAIRING - A

GENERAL SCHEME

The proposed method has three basic stages: The
first stage chooses a random initial plan for repairing.
In the second stage, the initial plan is decomposed
into a number of disjoint sub-plans, and one of them
is chosen for rescheduling. In the last stage, tasks in
the selected part are rescheduled to improve the
current plan. During reorganization, historical data
can be taken from the database (if they exist) to
evaluate newly created plans. This cycle continues
until time expires.
In general, generating an initial plan could be made
at random by taking any plan, if the problem solving
is too complicated. However, the importance is not to
generate already examined plans.
In the second stage, the current plan is decomposed
to a number of disjoint parts. Then, one or several of
disjoint parts are selected for rescheduling.
On the basis of predefined constraints the solver
calculates and chooses parts of the current plan for
rescheduling (explanation in more can be found in

Section 5). Of course, there are many different
constraints, which eventual plans have to satisfy, e.g.,
deadline for the last task of a plan, minimal cost or
quality. Beside that, there are such constraints that
are generated from particular task relationships.
In the last phase (the most important one) the solver
tries to modify an order of tasks in the selected part,
with the expectation to achieve a better plan
(according to the common measure). The solver takes
the last best-achieved plan as a target for comparison
with newly created ones.
Repairing process is an iterative one, in which the
solver successively modifies an order of each task in
the selected parts, until all variants are examined or
plan(s) with the desired parameters is achieved. If
better results are not achieved, more parts can be
selected for rescheduling. Repairing process might
continue to improve the plan’s quality until time
limitation expires. Plans are selected on the basis of
the common measurement. A plan quality is
represented by a vector {z1, z2,..., zr}, where i∈[1,r]|zi
is one of parameters. Plans could be assessed by a
coefficient evalu(plan) defined by the following
equation:

evalu(plan)= α1z1 +....+αrzr (1)
or

evalu(plan)= 22
11)(...)(rr zz αα ++ (2)

where α1,..,r≥0 are weights defined by the user, which
express the priority of each criterion over others in
selecting final plans; and they satisfy a condition:

α1+α2+…+αr =1. (3)
The criterion function evalu(plan) could also be more
complicated, if the user evaluates each parameter by
different manners, e.g. the cost might multiply to the
second degree, but plan time and makespan are
evaluated by linear combination.

5. DECOMPOSITION AND SELECTION FOR

RESCHEDULING

The first difficulty is selecting parts of the current
plan for rescheduling. Let us divide the initial set of
tasks into two parts: one consists of rescheduled tasks
(marked as Set_resche) and the second one consists
of the rest of tasks (marked as Set_irre). Tasks in
Set_irre have unchanged orders and methods for
execution during the rescheduling process. Two most
important criteria for choosing parts for rescheduling
are time and cost requirement; however, there could
be more criteria, such as, quality, idle time, etc.

5.1 Selection of parts for rescheduling from the time
point of view

Let assume that there is a predefined deadline when
the last task has to be terminated. For each task Taski
we define:
− T_mi is minimal duration of its execution (among

all possible methods for performing this task),

− Ti is duration of this task by using the current
method,

− Start_ti, is its start time, End_ti is its termination
time.

End_ti = Start_ti +Ti ≥ Start_ti + T_mi (4)
Each task has a set of predecessor and successor
tasks. Denote
− Taski ⇒ Taskk means Taskk requires results of

Taski.
− pre(Taski) is a set of predecessors of Taski: ∀Taskk

∈ pre(Taski) | Taskk ⇒ Taski .
− succ(Taski) is a set of successors of Taski: ∀Taskk

∈ succ(Taski) | Taski ⇒ Taskk .
− Taski is called a starting task if pre(Taski) is empty;

and it is the ending task if succ(Taski) is an empty
set. There might be a number of starting and ending
tasks - let us denote S_Tasks and E_Tasks as a set
of starting and ending tasks, respectively.

− min_durationi denotes minimal time interval from
start of Taski till end of the last task.

In the following definitions I present the necessary
conditions for feasible plans.
Definition 1: A plan is realizable if the following
conditions are satisfied for all i, k:
− if Taski ⇒ Taskk , then Start_ti+T_mi ≤ Start_tk ,
− if [Start_ti ,Start_ti +T_mi]∩[Start_tk,

Start_tk+T_mk] # 0 then Taski and Taskk are
executed in two different resources. �

For each plan, let us define the parameters Time_end,
which represent the time when the last task is
terminated. In order to fulfil the deadline condition,
an inequality Time_end ≤ Deadline has to be valid. It
follows:

Start_ti ≤ Deadline – min_durationi (5)
Equation (5) shows out the necessary condition that
each task has to fulfil in order to keep the specified
deadline. In other words, Equation (5) specifies the
latest time when each Taski has to start in order to
keep a deadline. All tasks that violate this condition
must be included in the selected part (Set_resche) for
rescheduling. Here the challenge is how to identify
the value min_durationi for an arbitrary Taski.
In this paper we assume that all the resources are not
equivalent and each task can be executed in only
several ones of them (a task can be migrated between
these equivalent resources). For example, a job-shop
scheduling problem, in which each task could be
executed in only one type of resources, not in all. In
order to estimate values min_duration in a general
case, when all resources are not the same, the
following method is proposed.
Genetic Heavy Weight Task (GHWT): let us denote
last_time as the time when a resource finishes the
last operation. At the beginning setting last_time = 0
for each resource.
- Each resource takes a task with the longest duration

(T_m), which is executable at this moment by this
resource.

- In each turn: choose a resource with a minimal
last_time. If tasks that are executable in this
resource exist (with all predecessors already
assigned), then the one with the longest duration
(T_m) will be selected for execution, otherwise the
next resource with the second minimal last_time is
selected, etc. Record a Start_t and update a value
last_time by T_m of the newly assigned task.

- Stop when all tasks are assigned.
- After constructing a plan, calculate a value

min_duration for each task as follows:
min_durationi = Time_end -

j
min Start_tj +

T_mi
(6)

where Taskj ∈ Succ(Taski) and ∀i=1,..,m values
Start_ti are stored before.
It is easy to verify that GHWT has a complexity
(≅O(m2)), since in each turn the number of tasks that
this algorithm examines is maximally m. Variables
min_duration have also another function – they are
used to estimate the time when a plan finishes.

5.2 Selection of parts for rescheduling from the cost
point of view

Let us assume that there is a maximal defined cost
(max_cost) that a plan can have. To simplify we
propose that an execution cost of each task depends
on only the method selected for execution. On the
basis of such assumption the total cost of a plan is
calculated as the sum of the cost of all tasks
execution. Let us define:
- ci is a cost of Taski by using the current method

for execution.
- min_ci is the minimal cost of Taski among all

applicable methods.
- max_ci is the maximal cost of Taski among all

applicable methods.
- total_cost = ∑ci|∀i is the total cost of a plan.
It is provable that:

max_cost- ∑
∈ irreSetTask

i
i

c
_

 ≥ ∑
∈ rescheSetTask

i
i

c
_
min_

(7)

Equation (7) expresses the necessary condition that
the selected part of tasks for rescheduling has to
fulfil. More details could be found in [Dang, 2003].

6. PLAN REPAIRING

After selecting a part (or several parts) of tasks for
rescheduling, repairing process is started. Starting
with the unchanged part of the initial plan, step-by-
step the solver adds a number of tasks from part
Set_resche to a plan. The best-first search method is
used to find the best intermediate plan, but with some
modifications (to be explained later). This process
continues until all tasks from set Set_resche are
added to the plan.

6.1 Forward search applied in plan repairing

The main idea of forward search (FS) is explained as
follows: Starting with a plan that is constructed of
tasks from Set_irre(called Part 1), solver tries to
explore all possible neighboring sub-plans, which
could be created by adding some tasks from set
Set_resche to Part 1. It is similar to the best-first
search method (BFS); the difference is that, in order
to increase the quality of eventual plans, first
performs a branch-and-bound search to a certain
depth. Afterwards, it selects one of the best
intermediate plans for a new root and continues
searching from this one. As a result, there is a larger
chance to reach a better choice than the BFS.
Comparing temporary plans requires parameters of
the temporary plan and the remaining part of a plan
created by unassigned tasks. Because FS is used, the
parameter of the temporary plan is identified
immediately. Identifying the second parameter is
more difficult, because it requires examining all
potential variants that unassigned tasks can create.
For that reason, I have adopted an idea from [Kumar
et al., 1994, chapter 8], [Nguyen et al., 2002] to
predict these parameters.
Referring to Figure 1, after choosing a part of tasks
for rescheduling, all values min_durationi for Taski ∈
Set_resche are loaded from the database. Next, the
total cost of all the selected tasks is calculated easily.
Without loss of generality, let us assume that only
one level ahead will be calculated, and Task4 and
Task6 are added at level 1 to the temporary plan.
Both tasks use their first method for execution with
corresponding parameters Task4: {T4, c4} and Task6:
{T6, c6}. Task4 is executed by resource 1, and Task6
by resource 2.
Solver uses the stored values min_duration to
estimate the time when the final plan will finish. Let
us denote t1, t2, t3, … as the time when resources
perform their last operation (indexes 1, 2, 3
correspond to the number of resources) and
Time_end as the time when a plan will finish. Tremain
is the time interval after Task4 and Task6 are finished
up to the end of a plan. An estimate of values Tremain
and Time_end is made as follows:

Tremain ≅ max[(min_duration4 – T_m4),
(min_duration6 – T_m6)]

(8)

and
Time_end ≅ max[t1 + T4 + (min_duration4 –
T_m4), t2 + T6 +(min_duration6 – T_m6), t3,.]

(9)

Due to the definition of min_duration introduced in
Section 5, values Tremain and Time_end cannot exceed
the real time when a plan finishes. Because all
variables of Equation (8) and (9) are known, values
Tremain and Time_end can be specified immediately
without a complicated calculation. Both Equation (8)
and (9) can be extended for a general case where
instead of Task4 and Task6 they can work with all
tasks that are assigned at that moment to a temporary
plan. In a general case, let Taski1 be added to
resource 1, Taski2 to resource 2, Taski3 to resource 3,
etc.., then values Tremain and Time_end can be
estimated as:

Tremain ≅ max[(min_durationi1 – T_mi1),
(min_durationi2 – T_mi2), …] (10)

and
Time_end ≅ max[t1 + Ti1 + (min_durationi1

– T_mi1), t2 + Ti2 +(min_durationi2 –
T_mi2), ...]

(11)

Variables Tremain and Time_end are close to the real
values, if all tasks are executed by the shortest
methods. To get more precise values of these
variables, calculating Tremain and Time_end as well,
when all the remaining tasks are executed by the
longest methods is useful. The process to get these
values is similar as above. Estimates of time when a
plan will finish could be calculated as a combination
of these values.

An estimate of the cost of the second part of a plan
could be made in a similar way. Let cremain denote the
total cost of all unassigned tasks after adding Task4
and Task6 to a temporary plan. An estimate of cremain
is computed as the total sum of the minimal cost of
each unassigned task:

cremain ≅ min_cresche – (min_c4 + min_c6) =
min_cremain

(12)

min_cresche is an estimate cost of all unassigned tasks
when they are executed by the method with lowest
cost; min_c4 and min_c6 are minimal performance
cost of Task4 and Task6. All variables of Equation
(12) are known; therefore the cost estimate could be
specified immediately. Similarly, it is possible to
ensure that the cost estimate calculated by Equation
(12) does not exceed the real cost of reaching the
goals from the current state. This equation could also
be extended for a general case with an arbitrary
number of tasks. Let us use the same assumption as
above: Taski1 is added to resource 1, Taski2 to
resource 2, Taski3 to resource 3, etc..; then the cost
estimate is calculated as the total sum of the minimal
cost of each unassigned task:

cremain ≅ min_cresche – (min_ci1 + min_ci2 +
min_ci3 +..) = min_cremain

(13)

Of course, min_cremain defined as in Equation (12) or
(13) is minimal cost of the remaining part of a plan,
which requires executing all the rest of tasks by such
methods that guarantee minimal cost. In order to get
more precise values of cremain another variable, called
max_cremain is used, which expresses maximal cost of

Resource 1 Task4

Resource 2 Task6

End

Tremain

Part 1

t1 t3

≥min_duration4

≥min_duration6

t2

Figure 1: Estimation of execution time

Time_end

Resource 3

the rest of tasks. cremain then could be calculated as a
linear combination of the variables (min_cremain and
max_cremain), e.g.,

cremain = β1 max_cremain + β2 min_cremain (14)
where β1 + β2 =1. On the basis of the achieved
results, coefficients {β1, β2} are modified to adjust to
the criterion function, in order to find the most
appropriate combination. Calculation of max_cremain
is similar to the calculation of min_cremain, so
explanation is omitted. In the next part the method
for plan repairing is presented.

7. RANDOM START AND PLAN REPAIRING

BASED ON FORWARD SEARCH

In this section the algorithm used for solving a multi-
parameter planning problem is presented.
First: using the GHWT method for calculating Tremain
(presented in Section 5.1).
The RSaFS Algorithm:
Phase 1: choose a random initial plan.
Phase 2: choose parts Set_irre and Set_resche for
rescheduling – Section 5.
Phase 3: initialization:
a. solution the current temporary plan
b. g(solution) and h(solution) are a vector of all

parameters of the current sub-plan and the
remaining part of a plan, which consists of
unassigned tasks

1. calculate all possible configurations to k steps
ahead; constant k is defined in interval [1,10].

2. for each constructed temporary plan, estimate
values of a minimal time termination, minimal
and maximal cost of the remained part,

3. choose a temporary plan with the highest
promising results according to the defined
measure (Equation (1) or (2)) (calculating
parameters of the eventual plan is presented
below);

4. update the solution, then return to step 1
5. stop when all tasks are assigned. Update the

currently best solutions,
6. compare the time and cost criteria, if the cost

criterion has more important influences upon the
criterion function, then increase β2. Otherwise,
increase β1. Restart phase 1;

7. if a newly achieved plan has significantly
different parameters from the estimated ones
(essentially, time when a plan finishes), recall
GHWT to recalculate all estimate values Tremain,
but on the basis of the new plan.

Phase 1 is easy for understanding. An initial plan
could be chosen at random.
Phase 2 has been explained in detail in Section 5. In
Step 4 of Phase 3, parameters of an eventual plan are
calculated on the basis of values of vectors
g(solution) and h(solution). The time when a plan
finishes could be estimated by using Equation (10)
and (11) in which values Tremain are taken from the

procedure that has been called before starting the
repairing phase. The cost of a final plan is estimated
by merging the cost of g(solution) and h(solution).
On the basis of the estimated values, the newly
constructed plan with highest evaluation is chosen as
a new state of a search. Then, the set of unassigned
tasks is reduced by the tasks that have been added to
the selected plan. Steps 7 and 8 are used to get more
precise cost and time estimates, since a situation
might happen when the first estimate values are far
from the realistic ones.

8. SIMULATION RESULTS AND COMPARISON

The algorithm selected to compare with RSaFS is a
heuristic search plan – HSP-r [Bonet & Geffner,
2001]. HSP-r is essentially the best-first search
method, but it deals with only the cost parameter.
Both the algorithms are implemented in C++.
The case of study chosen for solving is a standard
scheduling problem, which could be described as
follows: there are 10 different products, each of them
consists of 10 different tasks (or operations), which
are executable in specific resources. Each task could
be executed by two methods with different duration
and cost. In general, when duration increases, the
cost decreases and vice versa, but these variables are
not directly dependent one from the other. There are
five groups of resources; each of them consists of
two equivalent machines. Tasks can be migrated
among these equivalent machines.
Simulation results are shown in Table 1. Each
algorithm has 5s for running (there is only time of
using processor for calculation, without time needed
for operation system or generating input data). The
criterion function used to evaluate plans is:
eval(plan) = 0.6*time + 0.4*total_cost, where time is
the time when the last task is accomplished, and
total_cost is the total cost of execution of a plan. (β1,
β2) are coefficients used to make estimates of the
cost. The estimated cost is calculated as follows:

cremain = β1 max_c + β2 min_c, (15)
max_c and min_c are the maximal and minimal costs
of the rest of tasks.
In Table 1, RSaFS-10, or -all, mean that after
finishing the first step, only 10 the best states, or all
states are taken for consideration within the
framework of two-step forward search, respectively.
HSP-r uses the best-search algorithm and it chooses
only one best temporary state to continue its search.
In comparison, RSaFS explores many states at once
and, moreover, it performs a search forward in
several steps. Therefore, there is a larger probability
than in HSP-r that the selected state is the optimal
one. The next significant difference is that RSaFS
allows improving the current estimation of the cost
by changing coefficients β1 and β2 (from Equation
(15)) during searching in order to adjust to the
criterion function. HSP-r uses a fixed estimate of the
cost, but as the achieved results show, there is not a

good combination for every situation, which would
always guarantee the best solution. RSaFS modifies
coefficients β1 and β2 in such a way, in order to focus
on finding such plans, which have a better chance to
optimize the criterion function. For example, in these
experiments, when a plan with parameters
(execution_time= 80 and total_cost=450) is found, it
is easy to see that the cost has bigger influence on the
criterion function than the time of execution.
Therefore, solver tries to find a plan with smaller
cost, increases coefficient β2 and decreases β1. Thus,
the cost estimate prefers plans with small cost, close
to the minimal cost of execution, to those with short
time of execution. If this trend achieves better
solutions, the process continues. Otherwise, solver
tries with other coefficients. In all experiments this
process converts to the conclusion that calculation of
estimated cost by using only the minimal cost (β1=0
and β2=1) brings the best results of all. However, this
conclusion is not always true for every planning
problem. For example, when the cost of plan is much
lower than the time of execution, then using the
maximal cost only (equivalently with preferring to
use methods that have a short duration for executing
tasks) for making estimates brings the best results. In
cases when the criterion function has more
parameters or it is not a linear function, setting
appropriate coefficients {β1, β2,…} might not be an
easy task, but modifying them frequently in order to
adjust to the criterion function achieves really better
results than using fixed parameters.
There is one advantage of HSP-r over RSaFS; that is,
HSP-r achieves quicker solutions than RSaFS due to
the fact that a forward search within the repairing
phase explores much more states than HSP-r does. In
general, HSP-r could be considered as a special case
of RSaFS when a new state of a search is selected
after performing only one-step forward investigation.
If the time available for running a program is too
short, HSP-r might achieve better solutions, since
RSaFS cannot examine as many plans as HSP-r can.

9. CONCLUSSION

The simulation results indicate that for resolving a
concrete type of planning problems like the
scheduling problem that has been chosen as the case

of study, RSaFS has achieved significant
improvements in comparison with HSP-r, if they
have the same time of solving. There are also other
algorithms, e.g., a number of different algorithms
based on graphplan (Blum & Furst, 1997), little
different or modified from the graphplan. Due to
complicated problems associated with maintaining
and memorizing data as discussed in Section 2 are
seen as an inappropriate method for solving the types
of planning problems – planning in manufacturing -
that are dealt in this work. For that reason these
algorithms are not selected for comparison. The
scheduling problem that has been chosen for
simulation is a special type of the general planning
problems. However, applying RSaFS to other
applications could be the objective of future research.

Acknowledgement: This paper is partially supported by
APVT and VEGA grant agencies under grants No APVT
51 011602 and VEGA 2/1101/21.

REFERENCES

Blum A. and Furst M. (1997): Fast Planning Through

Planning Graph analysis. Artificial Intelligence, 90,
(1-2), p.281-300.

Bonet B. and Geffner H. (2001): Planning as
Heuristic Search. Artificial Intelligence,129, p.5-33.

Dang T.-Tung (2003): Dissertation work, 2003.
Hoffmann J. (2000): A Heuristic for Domain

Independent Planning and Its Use in an Enforced
Hill-Climbing Algorithm. In Proc. the 12th Int.
Symposium on Methodologies for Intelligent
Systems, p. 216-227.

Kumar V., Grama A., Gupta A., and Karypis A.
(1994): Introduction to Parallel Computing. Design
and Analysis of Algorithms. The
Benjamin/Cummings Publishing Company, Inc.,
California, 1994. ISBN 0-8053-3170-0.

Nguyen X., Kambhampati S. and Nigenda R. (2002):
Planning Graph as the Basis for deriving Heuristics
for Plan Synthesis by State Space and CSP Search.
Artificial Intelligence, 135, p.73-123.

Tran Viet D., Hluchý L., Nguyen Giang T. (2000):
Parallel Program Model for Distributed Systems.
In: Proc. of 7th European PVM/MPI Users' Group
Meeting, Hungary, Springer Verlag, p.250-257.

Table 1: Simulation results

(β1, β2) Experi. Num. 1 2 3 4 5 6 7 8 9 10
1-0 HRS 180 168 192 183 181 188 185 198 178 180
0-1 HRS 155 108 147 115 142 155 165 162 121 120
1-0 RSFS-10 170 162 178 161 182 176 185 181 141 181
1-0 RSFS-all 181 169 192 165 181 178 183 198 141 181
0,5-0,5 RSFS-10 139 132 156 122 164 119 163 163 107 105
0,5-0,5 RSFS-all 135 132 134 122 180 155 175 128 140 106
0,3-0,7 RSFS-10 135 141 149 94 168 137 177 144 89 112
0,3-0,7 RSFS-all 146 121 126 106 111 141 171 144 95 99
0-1 RSFS-10 138 128 165 103 168 154 172 149 108 123
0-1 RSFS-all 110 101 137 89 88 122 182 131 77 106

