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Abstract: This paper investigates the development of the Adaptive Neuro-Fuzzy Systems
with Local Recurrent Structure (ANFS-LRS) and their application to Fault Detection and
Isolation (FDI).  Hybrid learning, based on a fuzzy clustering algorithm and a gradient-
like method, is used to train the ANFS-LRS.  The experimental case study refers to an
application of fault diagnosis of an electro-pneumatic actuator.  A neuro-fuzzy simplified
observer scheme is used to generate the residuals (symptoms) in the form of the one-step-
ahead prediction errors.  These are further analysed by a neural classifier in order to take
the appropriate decision regarding the actual behaviour of the process. Copyright © 2005
IFAC
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1. INTRODUCTION

High performance process control and supervision
often require accurate process models. Most
processes are non-linear and, therefore, their model
should be non-linear (Patton et al., 2000). Neural
networks have been shown to possess good non-
linear function approximation capabilities and have
been used in non-linear process modelling.
However, the neural model obtained is considered to
be a “black-box” model since it is difficult to
interpret.
Within a specific operating region, a linear model
can approximate the non-linear process behaviour
with a reasonable accuracy. An approach to process
modelling is therefore to divide the process operation
into several regions and determine a locally linear
model within each region.  Takagi and Sugeno
(1985) used a fuzzy modelling approach in which
each model input is assigned with several fuzzy sets
characterised by a membership function. Through
logical combination of these fuzzy inputs, the model-
input space is partitioned into several fuzzy regions.
A locally linear model is used within each region.
The global model output is obtained through the

weighted average of the local model outputs.
Fuzzy sets provide an appropriate tool to define
operating regions since the definition of the operating
regions is often vague in nature and there usually
exist overlapping among different regions (Brown &
Harris, 1995; Murray-Smith & Johansen, 1997;
McGinnity and Irwin, 1997; Babuska & Oosteram,
2001; Uppal & Patton, 2005).
The Sugeno fuzzy model is implemented by an
Adaptive Neuro-Fuzzy System (ANFS) that
combines the capability of fuzzy reasoning in
handling uncertain information and the capability of
neural networks in learning from examples (Jang,
1995).
In order to be used to model a non-linear dynamic
system, the ANFS should be equipped with dynamic
elements. An approach is to use external delay
elements, but this increases the dimension of the
input space. Another approach is to use internal
dynamic elements. This paper proposes a dynamic
architecture for the ANFS, namely the adaptive
neuro-fuzzy system with local recurrent structure.
This is obtained by using Auto-Regressive Moving-
Average filters in the consequent part of the fuzzy
rules, on the back connection from the output to the



input of each local linear model.
Process input-output data are used to train the ANFS-
LRS, i.e. to determine the parameters that would
minimise a performance index. Firstly, a fuzzy
clustering algorithm is used to determine the number
of fuzzy operating regions and the initial values for
the membership functions. Then, gradient-based
learning algorithm is applied in order to refine the
parameters of the membership functions and to
determine the parameters of the local linear models
(Jang, 1995; Zhang and Morris, 1996).
The paper is organised in six sections as follows.  In
Section 2, the principles of fuzzy and neuro-fuzzy
modelling are presented.  The architecture and the
learning procedure for ANFS-LRS are presented in
Section 3.  Section 4 refers to the design of an FDI
system based on ANFS-LRS (residual generation)
and neural networks (residual evaluation).  The
application of the ANFS-LRS to the fault diagnosis
of an actuator located at the Lublin sugar factory in
Poland is presented in Section 5. The conclusions are
given in Section 6.

 
2. FUZZY INFERENCE SYSTEM AND FUZZY

MODELLING

The Fuzzy Inference System (FIS) is a framework
based on the concepts of fuzzy sets, fuzzy rules and
fuzzy reasoning.  It has been successfully applied in
fields such as automatic control, data classification,
decision analysis and computer vision. The basic
structure of a FIS consists of three main components:
(1) a rule base which contains a selection of fuzzy
rules, (2) a database which defines the membership
functions used in fuzzy rules and (3) a reasoning
mechanism which performs the inference upon the
rules and a given condition to derive a reasonable
conclusion (output).
One of the most applied FIS structures is the Sugeno
fuzzy model proposed by Takagi and Sugeno in
(Takagi and Sugeno, 1985).  A typical fuzzy rule in a
Sugeno fuzzy model has the form:

Rule i:
if x1 is A1 and x2 is A2 and ... and xn is An then

),...,,( 21 ni xxxfz = ,

where n,...,1j,A j =  are fuzzy sets in the antecedent
part of i-th rule, while )x,...,x,x(fz n21i =  is a crisp
function in the consequent part of i-th rule. Usually,

)x,...,x,x(f n21  is a polynomial in the input
variables n,...,1j,x j = , but it can be any function. If

)x,...,x,x(f n21  is a first-order polynomial, then the
resulting FIS is called first-order Sugeno fuzzy
model.
Each fuzzy rule can be interpreted within a local
modelling framework. The consequence function

)x,...,x,x(f n21  of each rule can be considered to
constitute a local model, defined by a set of
parameters.  The antecedent part of each rule,
defined by the fuzzy sets: n,...,1j,A j = , determines
the regime of each local model or a subset of the
input space over which this local model applies.  The

rule firing strengths defined by:
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give the validity function of each local model.  Since
each rule has a crisp output, the overall output is
obtained via weighted average:
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where iw  are the firing strengths of i-th rule (Jang,
1995) and M is the number of fuzzy rules.
 A fuzzy model can be implemented by a special type
of neural network called Adaptive Neuro-Fuzzy
System (ANFS) (Jang, 1995).  The ANFS combines
the capability of fuzzy systems to handle uncertain
and imprecise information, with the ability of the
neural networks to learn from examples.  The
concept of neuro-fuzzy modelling refers to the way
of applying various learning techniques developed in
the artificial neural network literature in order to
determine the parameters of a fuzzy model. 
 The identification of dynamic systems requires
models with adequate memory.  For this reason, the
ANFSs have to be provided with dynamic elements
and appropriate learning methods (Mirea and Marcu,
2002a). A first approach refers to ANFS with
external dynamics (Jang, 1995; Zhang and Morris,
1996), i.e. static ANFSs provided with external
cascades of filters.  A different approach is achieved
by ANFSs with internal dynamics, for which internal
local recurrent connections are used. In the sequel,
the second approach is considered leading to the so-
called ANFS-LRS. This kind of neuro-fuzzy system
processes multiple inputs and does not require past
values of the process measurements.
 
 

3. ADAPTIVE NEURO-FUZZY SYSTEMS
WITH LOCAL RECURRENT STRUCTURE

The proposed ANFS-LRS architecture is presented in
Fig. 1. In contrast with the ANFS approach, in this
case each local model is described by:
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where M is the number of the fuzzy rules.
Every node in the 1st layer is an adaptive node with
the output defined by )u( pA i,p

µ , i=1,...,M, p=1,...,P,

where pu  is the input to the node and i,pA ,
M,,1i K=  are the fuzzy sets associated with this

node.  The outputs of the first layer represent the
membership values of the antecedent part of the
rules. The membership functions can be any
appropriate parameterised membership function,
such as the Gaussian function:
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In relation (4), c represents the centre of the
membership function and σ  determines the

membership function’s width. Parameters in this
layer are referred to as premise parameters.
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Fig. 1 ANFS with local recurrent structure

The 2nd layer consists of fixed nodes, which
multiplies the incoming signals:
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In fact, each node output represents the firing
strength of a rule.  Instead of the product, any other
T-norm operator can be used to perform the fuzzy
AND operator.
Every node in the 3rd layer is a fixed node that
computes the normalised firing strength of the i-th
rule:
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The 4th layer consists of adaptive nodes with the
output given by ]k[zw ii ⋅ , where iw  is the output
of the third layer and ]k[z i  is given by relation (3).
The parameters in this layer, { p,ia , iθ , j,ib , l,id }
will be referred to as consequent parameters.
The 5th layer has a single fixed node that computes
the overall output of ANFS-LRS as a summation of
all incoming signals:
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As a system is usually monitored using sampled data,
a discrete time representation of the process is
required. The purpose is to identify neuro-fuzzy
models for each system output, i.e. Multi-Input
Single-Output (MISO) models (Mirea & Marcu,
2002b).
For dynamic system identification, these models
require spatial representation of time. Because the
structure suggested for the neuro-fuzzy system
includes dynamic elements (the local recurrent
connections), it has to be fed only with current values
of the inputs and the outputs of the process (Mirea &
Marcu, 2002a; 2002b).  In this way, the order of the
input space of the neuro-fuzzy system is decreased in
comparison with the approach based on the ANFS
with static structure. For the sake of simplicity, a

Single-Input Single-Output (SISO) dynamic system
is considered.
Thus, the input-output model obtained using an
ANFS -LRS is:

])1k[y],k[u(f]k[ŷ PP −= , (8)

where Pu  denotes the process input, Py  represents
the process output, and ŷ  denotes the approximated
output given by the trained ANFS-LRS.
One considers N data pairs collected from the inputs
and outputs of the process. In the training stage, the
ANFS-LRS parameters, collected in a vector ξ , are
adapted in order to minimise a quadratic performance
index such as the sum-squared error between the
ANFS-LRS output, ]k[ŷ , and the considered process
output, ]k[yP . The objective is to ascertain an
optimal parameter set *ξ  of the ANFS-LRS that
minimises the considered performance index:
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A method to select the number of fuzzy rules and the
initial values for the premise parameters, based on
the training data, is to use a fuzzy clustering
algorithm (Chiu, 1994; Mirea & Marcu, 2002b). The
purpose of the fuzzy clustering algorithm is to distil
natural groupings of the ANFS-LRS input data set,
producing a concise representation of the system’s
behaviour. Finally, a number of cluster centres are
obtained.  For each data point a degree of
membership to each cluster is computed (Marcu,
1996; Mirea & Marcu, 2002b).  Based on these
values, the standard deviations of each Gaussian
membership function are obtained.  The resulting
cluster centres and standard deviations are used as
initial values for the premise parameters and are
found using the following gradient method:
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Relation (10) is used to adapt the consequent
parameters as well. For these parameters, an
initialisation with small random values is applied. In
relation (10), ς  is one of the ANFS-LRS premise or
consequent parameters and η  is the learning rate.

4. NEURO-FUZZY DESIGN OF FDI SYSTEM

4.1 Residual generation

For the generation of symptoms, the ANFS-LRSs
replace the analytical models that describe the
process. Instead of a multi-input multi-output
structure, an ANFS-LRS model for each system
output is identified, i.e. a MISO model. As the
control system operates in closed-loop, faults tend to
be hidden by feedback action. Thus, both inputs and
outputs of the process are used as inputs of the
ANFS-LRS.
The neuro-fuzzy models can be then used in an
observer-like arrangement (Marcu et al., 2001).
Structured sets of symptoms are generated to enable
a unique fault diagnosis. This is based on residual
signals that are obtained by subtracting the
approximations of an observer scheme from the
corresponding process measurements. The Neuro-
Fuzzy Simplified Observer Scheme (NF-SOS) is
described in the sequel.  Its design is based on the
use of ANFS-LRS introduced previously. It is further
applied to the considered case study.

The Neuro-Fuzzy Simplified Observer Scheme (NF-
SOS).  One considers a process with I inputs uP,i[k],
i=1,...,I and O outputs yP,j[k], j=1,...,O, all known at
sampling time k.  The NF-SOS consists of a number
of MISO neuro-fuzzy systems with each one driven
by all inputs and outputs of the process.  Each
ANFS-LRS estimates one output of the system:

O,...,1j

]);1k[],k[(f]k[ŷ PPjSOS-NFj

=

−= yu
(11)

where I,...,1ii,PP ]]k[u[]k[ ==u  is the vector of process
inputs and O,...,1jj,PP ]]1k[y[]1k[ =−=−y  is the vector
of process outputs.

The resulting bank of neuro-fuzzy models
approximates all outputs of the process.  The training
of the ANFS-LRSs is based on the system data
corresponding to its normal behaviour. The
following residuals are then generated:

O,...,1j];k[ŷ]k[y]k[ jj,Pj =−=ε (12)

These patterns of change are further used to detect
and locate the faults.

4.2 Residual evaluation

The Residual evaluation stage is actually a
classification task.  This means to match each pattern
of the residual vector with one of the pre-assigned
classes of faulty behaviour, if available, and the
fault-free case, respectively (Marcu et al., 2001).

The uncertainty in classification of patterns may

arise here from the overlapping nature of various
classes. For fault diagnosis this is a realistic
assumption, especially when incipient faults have to
be detected and isolated. Therefore, a robust decision
can be achieved by using a neural network as pattern
classifier (Marcu et al., 2001). The static Multi-Layer
Perceptron with sigmoid neurons is considered here.
The neural classifier maps the patterns (12) from the
residual space into a decision space. The patterns
belonging to a class are made to cluster around pre-
selected points, optimally chosen (Marcu et al.,
2001).  A fault is detected and isolated if an unknown
input pattern is mapped closest to one of the decision
space target vectors. That multi-dimensional point
corresponds to the associated learned class that
reflects a fault.
A fault is only detected if the input pattern is mapped
far from all learned classes.  For the latter case, that
is a new (faulty) situation, only the synthesis of the
classifier must be reconsidered for further fault
diagnosis.  One simple criterion used in the decision
logic is based on the minimum Euclidean distance to
the target vectors of the classifier.

5. ELECTRO-PNEUMATIC VALVE
APPLICATION

The methodology presented is assessed by using real
process data from the Lublin sugar factory in Poland
(Syfert et al., 2003).  The study refers to an electro-
pneumatic actuator installed at the steam boiler to
control the water level in the 4th boiler station.

The actuator has three main parts: the control valve,
the pneumatic linear servo-motor and the positioner.
A benchmark problem was developed in the
DAMADICS EU FP5 contract (Syfert et al., 2003;
Syfert 2003). In the benchmark, faulty data are
generated based on real measurements,
corresponding to the normal behaviour of the
process.  Table 1 shows the list of the faults that have
been considered.

Table 1. Faults considered for the FDI task

Control Valve Faults

F1 Valve clogging
F2 Valve plug or valve seat sedimentation

Pneumatic Servo-Motor Faults

F3 Servo-motor’s diaphragm perforation

Positioner faults

F4 Electro-pneumatic transducer fault
F5 Rod displacement sensor fault
F6 Positioner feedback fault

General faults/ External faults

F7 Fully or partly opened bypass valve
F8 Flow rate sensor fault

Fault-free data stored during one hour, every second,
have been used to develop the residual generator and
are also used to generate the faulty data based on the



MATLAB/ Simulink actuator model.  A testing data
set from another hour (same day) of exploitation of
the actuator was used to test the developed models
(testing data set 1). The ANFS-LRS models have
been validated using the data stored for 1 hour from
the previous day (testing data set 2).

The learning data used to develop the residual
generator are selected from a day the inputs had
significant variation, i.e. maximum possible
excitation of the process.  A training data set of 3600
rows was selected, corresponding to a 1 hour period.

To develop a model, spectral analysis has been
performed using the Fast Fourier Transform.  Based
on this, a low-pass filtering by means of appropriate
discrete-time Butterworth filter, with decimation has
been applied to reduce the noise. This also allowed
for the reduction of the amount of data used in the
ANFS-LRS learning.

Each identified model was tested by using the
complete training data set of 3600 rows and the
testing data sets from the next hour (same day) and
one hour from the previous day of the plant
exploitation.

The actuator has four inputs: the level controller
output, valve input water pressure, valve output
water pressure and the temperature of the water. The
actuator has two outputs represented by the
servomotor rod displacement ( 1y ) and the water
flow to the steam boiler inlet ( 2y ).

For residual generation, a simplified observer
scheme comprising two ANFS-LRS models was
developed.  The best identification results correspond
to ANFS-LRS characterised by 3 rules and

1nn CB ==  for both actuator outputs.

In Figs. 2 & 3, the outputs of the process (solid line)
are compared with the outputs of the corresponding
identified ANFS-LRS models (dotted line). Figs. 2(a)
and 3(a) refer to the testing data set 1, whilst Figs.
2(b) and 3(b) refer to the testing data set 2.

One observes that the developed ANFS-LRS models
have good generalisation properties, i.e. are able to
approximate with very good precision, data different
than the training data, corresponding to the normal
behaviour of the process.

(a)

(b)
Fig. 2 Servo-motor rod displacement (metres):

process output (solid line) vs. ANFS-LRS model
output (dotted line) corresponding to the testing
data set 1 (a) and the testing data set 2 (b).

(a)

(b)
Fig. 3 Water flow: process output (solid line) vs.

ANFS-LRS model output (dotted line)
corresponding to the testing data set 1 (a) and the
testing data set 2 (b)

To generate the entire set of residuals, the identified
neuro-fuzzy models were also fed with data from the
considered faulty behaviours of the process. Fig. 4
illustrates the process outputs (solid line) versus the
output of the corresponding identified neuro-fuzzy
models (dotted line) in the case of fault F3.

The generated residuals (12) corresponding to the
normal and considered faulty behaviours of the
process have been evaluated using a static Multi-



Layer Perceptron with two layers of sigmoid
neurons. The resulting neural classifier has 12
neurons in the hidden layer. The achieved
recognition rate is 93.67 %.

(a)

(b)

Fig. 4 Process output (solid line) vs. ANFS-LRS
output (dotted line) in the case of fault F3: (a)
output y1 and (b) output y2

6. CONCLUSIONS

This paper investigates the development of a new
neuro-fuzzy system with local recurrent structure and
its application to fault diagnosis (fault detection and
fault isolation) of an electro-pneumatic actuator
valve. The experimental results obtained by using the
suggested neuro-fuzzy system reveal its good
performances of approximation and generalisation,
being characterised by reduced training and
evaluation time.  This application of fault diagnosis
leads to good results, as reflected in a recognition
rate greater than 90%.

Further research will investigate the development of
a new class of neuro-fuzzy systems with feedback
connections between the local linear models and
their application to fault detection and isolation.
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