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Abstract: Output feedback sliding mode control has received great research interests, 
due to it does not require full accessibility of states and increases the ability of practical 
implementation of sliding mode control. In this paper, a new approach of chattering-free 
OFSMC design is proposed by incorporating integral sign function control for general 
multi-input multi-output linear uncertain systems. Compared with the boundary layer 
type chattering-free designs, the complete robustness to system matched disturbances or 
uncertainties has not to be sacrificed and the global attractiveness of the sliding surface 
can be achieved through the controller synthesis. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Sliding mode control (SMC) is a well-known robust 
control due to its complete insensitivity to the so 
called matched disturbances or uncertainties. 
However, the requirement of full accessibility of 
states either from direct measurement or from 
observer estimation has brought limitations to 
practical implementation. To increase its practical 
usage, SMC designs based on output information 
were investigated in the last decade and were often 
termed as output feedback sliding mode control 
(OFSMC). Various designs were proposed to deal 
with such problem, for example, a constrained state 
feedback design (Heck, et al., 1995) was proposed 
but the effect of system invariant zeros was not 
specifically addressed (Edwards and Spurgeon, 2000). 
Some designs based on system input-output 
relationship (Jiang, et al., 1997; Cunha, et al., 2003) 
were also proposed, but their internal stability was 
not discussed. A method (Edwards and Spurgeon, 
1995) was proposed where the state dynamics were 
decomposed into a so called “output feedback 

canonical form”. In this decomposition, it provides a 
clear structure for output feedback design and system 
invariant zeros can be proved to be imbedded in the 
output feedback dynamics. This method provides a 
useful analysis tool for general OFSMC designs and 
is also adopted in this research. 
 
The robustness of SMC is provided by a variable 
structure control used to suppress the effect of system 
disturbances or uncertainties. In the conventional 
SMC design, a sign function control acts the variable 
structure portion. However, a phenomenon called 
chattering will be generated due to the discontinuity 
nature of the sign function. It can be considered as 
the unmodeled high frequency dynamics excited by 
the discontinuous control action. Hence, chattering 
becomes a major drawback for SMC and many 
researches were intended to eliminate this 
phenomenon. Some techniques such as boundary 
layer (Kachroo and Tomizuka, 1996), and fuzzy 
SMC (Lo and Kuo, 1998) etc. were proposed to 
smooth the sign function. However, in these methods, 
the complete robustness has to be compromised due 



to the smoothed sign function control. Chen and Xu 
(1999) proposed a chattering-free output feedback 
design based on the output relative degree dynamics. 
In this method, an integral sign function control was 
introduced instead of conventional usage. Chattering 
is eliminated based on the fact that a discontinuous 
signal will become continuous after the integration 
action and a similar method (Pan et al., 2000) was 
also found. These two methods only concentrates on 
stabilizing the output dynamics and their extensions 
to multi-input multi-output (MIMO) systems were 
not fully discussed. 
 
It can be shown that the relative degree based design 
has the problem of internal stability and its extension 
to MIMO systems is not straightforward. In this 
paper, a new approach of OFSMC design 
incorporating integral sign function control for 
general MIMO linear uncertain systems of any 
relative degree is proposed. It will be shown that the 
properties of chattering-free and complete robustness 
to matched uncertainty are preserved in this approach. 
In addition, the problem of “sliding patch” (Edwards, 
et al., 2001) due to the incompleteness of state 
information is also overcome in the controller 
synthesis. 
 
The contents of this paper are organized into 
following sections: The design based on output 
relative degree dynamics is briefly introduced and 
discussed in section 2.1. The problem for MIMO 
linear uncertain system of any relative degree is 
formulated in section 2.2. The proposed OFSMC 
controller synthesis is presented in section 3. A 
numerical design example and its simulation results 
are presented in section 4. Section 5 is the 
conclusions and discussions. 
 
 

2. PROBLEM FORMULATION 
 
In surveying the integral sign function SMC designs, 
it is noticed that the sliding surface s  has to be 
relative degree zero to system input instead of 
relative degree one in traditional designs. Once the 
system is in sliding motion, the concept of equivalent 
control is derived from 0=s  instead of 0=s& . This 
characteristic is also true for the output feedback case. 
The OFSMC design based on system output relative 
degree dynamics is briefly introduced in the 
following section. 
 
 
2.1. The Introduction of Output Dynamics Designs 
 
Consider the method proposed in Pan, et al. (2000) 
which can be represented by the following SISO 
linear uncertain system of relative degree r subjected 
to matched uncertainty fm. 
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where nℜ∈x , ℜ∈u , ℜ∈y , nr0 ≤<  and 

ℜ∈mf  represents the matched uncertainty. Then the 
r output derivatives can be written as 
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To incorporate the integral sign function control, the 
sliding surface is defined to be 
    ( ) ( ) FY≡++++= − r1r

r21 yycycycs L&  (3) 
where ( )r,1,2,i,c i L=  are the scalar design 
parameters and [ ]1cc r1 L=F , 

( ) ( )[ ]TY r1r yyy −= L . The design criterion is on 
the selection of F such that the following polynomial 
is stable 
        0ξξcξcc r1r

r21 =++++ −L  (4) 
where ξ  denotes the Laplace operator. The 
controller of following type 
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can drive the system into sliding mode if γ  is large 
enough. Due to the nature of relative zero of the 
sliding surface, once system is in sliding motion, its 
dynamics can be derived from the concept of 
equivalent control at 0s =  which can be computed 
and denoted as 
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The closed-loop system becomes a state feedback 
dynamics ( )xBΓAx −=&  where the matrix BΓA −  
should be stable for internal stability. However, three 
important characteristics can be found in this design: 
1. stable output dynamics does not imply stable 
internal dynamics. 
2. open-loop eigenvalues can be affected by output 
feedback. 
3. system invariant zero is imbedded in the output 
feedback dynamics. 
These important characteristics were not specifically 
addressed in the methods based on output relative 
degree and its extension to general MIMO system 
will not be so straightforward. Hence, this paper is to 
investigate these problems for the MIMO system 
design. 
 
 
2.2 Formulation of MIMO system 
 
Consider a MIMO linear uncertain system with m 
inputs, p outputs and relative degree r which is 
denoted by a triple ( )CBA ,,  in the form of eq.(1) 

except mℜ∈u , pℜ∈y  and mℜ∈mf . mf  is 
assumed to be time differentiable and its derivative is 
norm bounded. Define r0,1,2,...,kk

k == ,CAC , 
then the r derivatives of output in eq.(2) represented 



by kC  becomes 
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Consider the new system ( )1r−CBA ,,  instead of 
original ( )CBA ,,  and assume it satisfies the 
following conditions: 
1. mp ≥  
2. ( ) mBC =−1rrank  
3. ( )1r−CBA ,,  is minimum phase 
Based on the output canonical decomposition 
(Edwards and Spurgeon, 1995), then ( )1r−CBA ,,  in 
the transformed coordinate can be written as 
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where p-n
1 ℜ∈x , m-p

2 ℜ∈x , m
3 ℜ∈x  and 

( )1,2,3ji,ij =,A  are system submatrices partitioned 
accordingly to the dimensions of 1x , 2x  and 3x . 

Matrix pp×ℜ∈T  is orthogonal and mB ×ℜ∈ m
2  is 

square of rank m. In addition, once the invariant 
zeros of ( )1r−CBA ,,  exist, then with another 
transformation, submatrices 11A  and 21A  will 
have a particular structure written as 
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where qq
11

×ℜ∈oA , ( ) ( )qpnqpn
22

−−×−−ℜ∈oA , 
( ) ( )qpnmp

21
−−×−ℜ∈oA  with ( )oo

2122 AA ,  is a observable 
pair. The number q denotes the number of invariant 
zeros of ( )1r−CBA ,,  which can be stated by the 
following lemma: 
 

Lemma: The eigenvalues of o
11A  are the invariant 

zeros of ( )1r−CBA ,, . 
proof: see Edwards and Spurgeon (1995). 
 
To proceed the proposed design with integral sign 
function control, an augmented system ( )aaa ,C,BA  

is constructed by augmenting the new m states of 3x&  

into eq.(8). By defining new state 34 xx &=  the 
augmentation can be obtained as 
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where 
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Theorem 1: ( )aaa CBA ,,  is controllable and 
observable if and only if ( )1−rCBA ,,  is controllable 
and observable. 
proof: 
This result can be derived by applying the P.B.H. 
rank test which writes: For controllability test, 
utilizing the fact of ( ) mB =2rank  which implies 

[ ] m
AAzIA
AAAzI

rankBAzIrank +







−−−
−−−

=−
232221

131211  

and 

[ ] m
AAzIA
AAAzI

rankBAzIrank aa 2
232221

131211 +







−−−
−−−

=−  

Hence ( )aa BA ,  to be controllable  

mn
AAzIA
AAAzI

rank −=







−−−
−−−

232221

131211   

( )BA,  to be controllable. 
Similar procedure can be used for observability test, 
then after some derivation which can be stated as 
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  ( )1−rCA,  

to be observable. Q.E.D. 
 
In this section, general MIMO linear uncertain 
system of relative degree r is formulated into an 
augmented system of relative degree one. The 
augmented system has a particular structure, which 
clearly specifies the system invariant zeros and 
accessible states, makes it suitable for output 
feedback design purpose. A controller design based 
on this formulation will be proposed and presented in 
the following section. 
 
 

3. THE PROPOSED OFSMC DESIGN 
 

The design method is separated into two steps. One is 
the selection of sliding surface and its corresponding 
sliding motion dynamics. The other is the controller 
synthesis. 
 
The Sliding Surface Design; The main aim of the 
proposed OFSMC design is to construct a sliding 
surface based on the augmented system of eq.(10) by 
using the accessible information of 2x , 3x  and 4x . 

Under such circumstance, the sliding surface ms ℜ∈  
can be defined to be 
             332241 xFxFxFs ++=  (12) 

where mm
1

×ℜ∈F  is an invertible square matrix and 
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determined. For systematic analysis and synthesis 
purposes, a nonsingular transformation sT  is 

introduced and by defining 2
1
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where 
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Once the sliding motion is attained or 0== ss & , then 
the sliding motion dynamics become a reduced 
system of order n as 
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which can be viewed as a static output feedback 
problem of CKBA ~~~

−  with matrices 
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Once ( )CBA ~,~,~  is static output feedback stabilizable, 
then the standard output feedback design techniques 
can be utilized in designing the feedback gain matrix 
K. It is often required that system is controllable and 
observable in order to apply the standard design 
techniques. The controllability of ( )BA ~,~  can be 
easily seen from the proof of theorem 1. The 
observability of ( )CA ~,~  can be assured from the 
P.B.H. rank test of these two matrices in eq.(16) and 
the structure of eq.(9) together with the fact of 
observable pair ( )oo

2122 AA , . By defining new 

matrices ( )CBA ˆ,ˆ,ˆ  to be 
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where 122A  and 132A  are the submatrices of 12A  
and 13A , respectively. It can be shown that the q 

invariant zeros in the submatrix o
11A  cannot be 

affected by the static output feedback which can be 
stated in the following theorem. 
Theorem 2:The spectrum of CKBA ~~~

−  is the 
spectrum of ( ) ( )CKBAAo ˆˆˆ −∪λλ 11 . 
proof: 
Based on eq.(9) and (17) and the matrix K in eq.(16), 
the closed-loop matrix CKBA ~~~

−  can be rearranged 
as 
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which directly implies 
( ) ( ) ( )CKBAACKBA ˆˆˆ~~~

−∪=− λλλ o
11 . Q.E.D. 

If the so called Kimula-Davison condition (Syrmos, 
et al., 1997) of ( )CBA ˆ,ˆ,ˆ  is satisfied, which in this 
case the dimensionality satisfies 1rnpm +−>+ , 

then the eigenvalues of CKBA ˆˆˆ −  can be placed as 
close as possible to the desired values. 
 
The Controller Synthesis; By defining nl vvu +=&  
in eq.(13) where lv  and nv  denote the linear and 
nonlinear controls respectively, a controller can be 
synthesized similar to the conventional design 
procedure. However, it notes that only the accessible 
information of 2x , 3x  and s  in eq.(13) can be 
used in the synthesis. By simply assigning the linear 
and the nonlinear portions to be 
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The closed-loop dynamics can be obtained as 
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To guarantee the existence of sliding motion, the so 
called approaching condition of the sliding surface 
must be satisfied which is referred to the derivative 
of energy function ( ) sssV T21=  being negative. 
From the energy function, the approaching condition 
can be written as 
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If γ  is selected to be 
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where 0>η  is a scalar, then the sliding surface 



satisfies the finite time approaching condition. 
 
In eq.(23) the exact value of 1x  cannot be known 
since the information of 1x  is not accessible and it 
will result a problem called sliding patch as 
mentioned in the introduction. If there exists the 
sliding patch then the sliding surface will not be 
global attractive. However, this problem can be 
avoided by the estimation of 1x  with a slight 
modification of the approach in Kwan (2001). 
Consider the dynamics of the first three states in 
eq.(21) which can be concisely denoted by 
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γ  in eq.(23) can be replaced by 
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which results a stronger finite time approaching 
condition and a global attractive sliding surface. 
Based on the controls of eq.(18) and (19), the actual 
control u is the integration of v which written as 
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with ( )0u  being an integration constant. 
 
The Controller in Original Coordinate; From eq.(8) 
the system output can be written as 
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information of 4x  can be obtained from system 
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Then the sliding surface in eq.(12) and the linear 
control in eq.(18) in original coordinate becomes 
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4. CASE STUDY 
 

Consider a 3-state system subject to a sinusoidal 
disturbances in the following 
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which is a system of 2 outputs, 1 input, relative 
degree 1 and no invariant zero. The augmented 
system ( )aaa CBA ,,  in eq.(10) can be computed as 
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Due to no invariant zero exists in the system, the 
system ( )CBA ~,~,~  in eq.(16) is used for static output 
feedback design where they are: 
















−

−
=

000
708013845040711

145700192058161
...

...
~A , 
















=

1
0
0

B~ , 









=

100
010

C~  

Select the matrix gain to be [ ]1059.−=K , 

then CKBA ~~~
−  possesses stable eigenvalues at 

{ }03638160821 .,., −−− . For simplicity, chose 11 =F  
then its corresponding sliding surface in original 
coordinate of eq.(31) can be calculated to be 

[ ] [ ]yys 510656445123417093980 .... −−+−= &  
and the controller in original coordinate of eq.(32) is 

[ ] ( ){ }∫ ++=
t

ssy
0

dt197110249058991211225630u sgn.... γ  

where ( ) 503278t356313 ++= πωγ ..  and ( )tω  
satisfying the dynamic equation of ( ) ( ) s+−= tt ωω& . 
In the simulations, the initial values of ( )0x  and 

( )0u  are selected to be [ ]T111  and 0 
respectively. ( )0ω  is selected to be 2 which satisfies 
the condition of eq.(25). The sliding surface response 
s  is shown in Fig.1 which demonstrates the global 
attractiveness of the proposed control. The state 
reaches sliding surface 0=s  at approximately t=0.4 
sec and stays at it for the subsequent time. The results 
of state response and output response are shown in 
Fig.2 and Fig.3 respectively. These two figures 
display the asymptotical stability of the system 
despite the existence of external disturbance. The 
control force is shown in Fig.4 which is a smooth 
control without chattering. 



 
 

Fig. 1. The evolution of sliding surface. 
 

 
 

Fig. 2. The evolution of states. 
 

 
 
Fig. 3. The evolution of outputs. 
 

 
 

Fig. 4. The control force 
 
 

5. CONCLUSIONS 
 

In this paper, a chattering-free OFSMC design for 
general MIMO linear uncertain systems of any 
relative degree is studied. An integral sign function 
control is used to avoid the chattering phenomenon. 
To incorporate the integral sign function and preserve 
the robustness of SMC, the construction of the 
sliding surface must be relative degree zero to system 
input which results in the requirement of higher 
derivative of the output. To deal with such problem, 
an augmented system formulation is proposed which  
provides a clear feature for system invariant zeros. In 
addition, the accessible states for output feedback 
design are also clearly sorted. An OFSMC design 
based on this formulation is proposed where the 

sliding patch problem is avoided. A numerical 
example with an external disturbance is given to 
illustrate the desired chattering-free and global 
attractiveness property of this approach. 
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