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1 INTRODUCTION

Consider a nonlinear time-varying control system with state
delays of the form

ẋ(t) = f (t,x(t),x(t−h),u(t)), t ≥ 0,

x(t) = φ(t), t ∈ [−h,0], (1)

whereh ≥ 0,x(t) ∈ X− the state,u(t) ∈ U− the control,
f (t,x,y,u) : [0,∞)×X×X×U → X,φ(t) : [−h,0]→ X− is
a given function.

The topic of Lyapunov stability of control systems de-
scribed by a system of differential equations is an interesting
research area in the past decades. An integral part of the sta-
bility analysis of differential equations is the existence of in-
herent time delays. Time delays are frequently encountered
in many physical and chemical processes as well as in the
models of hereditary systems, Lotka-Volterra systems, con-
trol of the growth of global economy, control of epidemics,
etc. Therefore, stability problems of time-delay control sys-
tems have been the subject of numerous investigations, see;
e.g. Ahmed 1990, Chukwu 1992, Niumsup et al. 2000, Phat
2002, Sun et al. 1996).

———–

The standard stability problem is to find a control func-
tion u(t) = h(x(t)) in order to keep the zero solution of the
closed-loop system

ẋ(t) = f (t,x(t),x(t−h),h(x(t)))

exponentially stable in the Lyapunov sense, i.e., the solution
x(t,φ) of the closed-loop system satisfies the condition

∃N > 0,δ > 0 : ‖x(t,φ)‖ ≤ Ne−δt‖φ‖, ∀t ≥ 0,

where‖φ‖= sups∈[−h,0] ‖φ(s)‖. In this case one says that the
system is stabilizable by the feedback controlu(t) = h(x(t))
and this control is called a stabilizing feedback control of
the system. The positive numberδ > 0 depending on the
stabilizing control is commonly called a Lyapunov stabil-
ity exponent. In the literature on control theory of dynami-
cal systems the stabilizability is one of the important qual-
itative properties and the investigation of the stabilizabil-
ity has attracted the attention of many researchers, see; e.g.
Curtain 1995, Phat 1996, 1996, 2002, Son 1999, Zabczyk
1992. In practice various stabilizability concepts have been
defined to improve the efficiency of the stability of control
systems. One of the extended stability properties of control
systems is the concept of the strong (or complete) stabiliz-
ability, originally introduced by Wonham 1967, which plays
an important role in many mechanical and control engineer-
ing problems (see, Ahmed 1990, Zabczyk 1992). This prop-
erty relates to a strong exponential stability of the control



system, namely, control system (1) is strongly stabilizable
if for every given numberδ > 0, there exists a feedback
control functionu(t) = h(x(t)) such that the solutionx(t,φ)
of the closed-loop system satisfies the condition

∃N > 0 : ‖x(t,φ)‖ ≤ Ne−δt‖φ‖, ∀t ≥ 0. (2)

This means that for any given positive numberδ > 0, the
system zero-input response of the closed-loop system de-
cays faster thane−δt . In other words, for any given in ad-
vance Lyapunov stability exponentδ > 0, the system can be
δ−exponentially stabilizable. Such definition may arise be-
cause of controlling of the speed of the real models in many
mechanical and physical control systems (see Benssousan
et al. 1992, Chukwu 1992). First results on the strong sta-
bilizability of linear time-invariant control systems in finite-
dimensional spaces can be found in Wonham 1967, where
by studying the spectrum of the system matrices or by solv-
ing a modified algebraic Riccati equation it was proved that
the global-null controllability (see Kalman 1960) implies
the strong stabilizability. Further extensions on the relation-
ship between the strong stabilizability and controllability
of infinite-dimensional time-invariant control systems are
given in Megan 1975, Phat et al. 2000, Slemrod 1974. How-
ever, the strong stabilizability and control design problems
for time-varying control systems have not been examined
fully in the literature, which are more complicated and given
results are lacking. The difficulties increase to the same ex-
tent as passing from undelayed to delayed time-varying con-
trol systems as well as from linear to nonlinear time-varying
delay systems. The aim of this paper is to study the strong
stabilizability problem for the following time-varying con-
trol delay system

ẋ(t) = A(t)x(t)+A1(t)x(t−h)+B(t)u(t) (3)

+ f (t,x(t),x(t−h),u(t)), t ≥ 0,

x(t) = φ(t), t ∈ [−h,0],

whereA(t),A1(t) : X → X,B(t) : U → X− are linear ma-
trix/operator functions and the given nonlinear perturbation
term f (t,x,y,u) : [0,∞)×X×X×U → X could result from
errors in modelling the general linear system (1), adding
parameters, or uncertainties and disturbances which exist
in any realistic systems. A common approach is to treat
the stability of the nominal linear control system. Then,
when the nonlinearities satisfy some appropriate growth
conditions, one can use the Lyapunov direct method to de-
sign a stabilizing feedback control. Based on the global
null-controllability assumption of the nominal linear time-
varying control system, sufficient conditions for the strong
stabilizability are established by solving a standard Riccati
differential equation. These conditions depending on the
size of the delay do not involve any spectrum of the evolu-
tion operator/matrix, and hence are easy to verify and con-
struct. For a systematic exposition of the results, we start

with the case of finite-dimensional control systems. Then,
the results are directed to infinite-dimensional control sys-
tems by extending the relationship between the global null-
controllability and the existence of the solution of a Riccati
operator equation. A constructive algorithm to find feed-
back stabilizing controls via the controllability and the solu-
tion of curtain Riccati equations is also given. The stability
conditions obtained in this paper are even new in the con-
text of linear time-varying control systems, and they can be
considered as further extensions of Ikeda et al. 1972, Megan
1975, Phat Linh 2002, Slemrod 1974, Wonham 1967 to non-
linear and time-delayed systems.

2 FINITE-DIMENSIONA SYSTEMS

The following standard notation is adapted throughout this
paper.R+ denotes the set of all real non-negative numbers;
Rn denotesn finite-dimensional Euclidean space, with the
Euclidean norm‖.‖ and the scalar product of two vectors
xTy; T denotes the transpose of the vector/matrix;Rn×m de-
notes the set of all(n×m)-matrices; A matrixA is sym-
metric if A = AT ; A matrix A is called non-negative def-
inite (A ≥ 0) if xTAx ≥ 0, for all x ∈ Rn;A is positive
definite (A > 0) if xTAx > 0 for all x 6= 0; M(Rn

+) de-
notes the set of all symmetric non-negative definite ma-
trix functions in Rn×n continuous int ∈ R+; X,U denote
infinite-dimensional real Hilbert spaces with inner prod-
uct 〈., .〉; L(X) (respectively,L(U,X) ) denotes the Banach
space of all linear bounded operators mappingX into X (re-
spectively,U into X ); L2([0, t],X) denotes the set of all
L2−integrable andX-valued functions on[0, t]; C([0, t],X)
denotes the set of allX−valued continuous function on
[0, t]; D(A) andA∗ denotes the domain and the adjoint of the
operatorA, respectively;clM denotes the closure of a set
M; I denotes the identity operator; An operatorQ ∈ L(X)
is called non-negative definite (Q ≥ 0) if < Qx,x >≥ 0,
for all x ∈ X; Q ∈ L(X) is called self-adjoint ifQ = Q∗;
LO([0,+∞),X+) denotes the set of all linear bounded set-
adjoint non-negative definite operator-valued functions in
X continuous int ∈ [0,+∞). Consider the control de-
lay system (3) in finite-dimensional spaces:X = Rn,U =
Rm,n≥m,A(t) ∈ Rn×n, A1(t) ∈ Rn×n, B(t) ∈ Rn×m,φ(s) ∈
C([−h,0],Rn). Throughout this section we consider the
class of admissible controlsu(t) ∈ L2([0,T],Rm) for every
T > 0. Furthermore, to guarantee the existence of the solu-
tion of the control system, the following conditions will be
made throughout this section:

A.1. A(.)x, A1(.)y, B(.)u, f (.,x,y,u) are continuous func-
tion onR+ for all x∈ Rn,y∈ Rn,u∈ Rm.

A.2. There are non-negative continuous functions



a(t),a1(t),b(t) : R+ → R+ such that

‖ f (t,x,y,u)‖ ≤ a(t)‖x‖+a1(t)‖y‖+b(t)‖u‖,

for all (t,x,y,u) ∈ R+×X×X×U.

Definition 2.1. Let δ > 0 be a positive number. Control
system (3) is said to beδ− stabilizable if there is a feedback
control u = h(x) such that the solution of the closed-loop
system satisfies the condition (2).

Definition 2.2. Control system (3) is said to be strongly
stabilizable if it isδ−stabilizable for everyδ > 0.

In order to study the strong stabilizability problem, it is
important to introduce the global null-controllability defini-
tion given by Kalman 1960. Consider the nominal linear
time-varying control system[A(t),B(t)] of system (3):

ẋ(t) = A(t)x(t)+B(t)u(t), t ∈ R+. (4)

Definition 2.3. Linear control system (4) is globally null-
controllable (GNC) in finite time if for every statex ∈ Rn,
there exist a finite timeT > 0 and an admissible control
u(t) ∈ L2([0,T],Rm) such that

U(T,0)x+
T∫

0

U(T,s)B(s)u(s)ds= 0,

whereU(t,s) is the fundamental matrix of the linear system
ẋ(t) = A(t)x(t).

The following well-known controllability criteria will be
used later.

Proposition 2.1. (Klamka 1991)Linear time-varying con-
trol system (4) is GNC in finite time if and only if one of the
following conditions holds:

(i) ∃T > 0 : The matrix
∫ T

0 U(T,s)B(s)BT(s)UT(T,s)ds
is positive definite

(ii) ∃t0 > 0 : rank [M0(t0),M1(t0), ...,Mn−1(t0)] = n, where
M0(t) = B(t) and

Mk+1(t) =−A(t)Mk(t)+
d
dt

Mk(t),

for k = 0,1,2, ...,n− 1, and A(t),B(t) are assumed to be
analytical functions on[0,∞).

In the sequel, the solution to the stabilizability problem
involves a Riccati differential equation (RDE) of the form

Ṗ+ATP+PA−PBBTP+Q = 0, P(0) = P0 (5)

whereP(t) is an unknown matrix function. Before proceed-
ing to the main result, a sufficient condition for the existence

of non-negative positive solution of the RDE (5) is provided
in the following proposition.

Proposition 2.2.(Kalman 1960)Assume that linear control
system[A(t),B(t)] is GNC, then for every no-negative posi-
tive definite bounded functionQ(t)≥ 0 and for every initial
matrix P0 ≥ 0, the RDE (5) has a solutionP(t) ∈ M(Rn

+),
which is a bounded function on[0,∞).

For everyδ > 0, we denoteÃ(t) = A(t)+δI , and consider
the following RDE

Ṗ+ ÃTP+PÃ−PBBTP+ I = 0. (6)

Let us setb = sup{t ∈ R+b(t), B = supt∈R+ ‖B(t)‖, and

p = sup
t∈R+

‖P(t)‖, a1 = sup
t∈R+

a1(t), A1 = sup
t∈R+

‖A1(t)‖.

The following theorem gives sufficient conditions for
δ−stabilizability of the nonlinear control delay system (3).

Theorem 2.1.Assume that the conditions A.1, A.2 hold and
linear control system[A(t),B(t)] is GNC in finite time. Non-
linear control delay system (3) isδ− stabilizable if

0 < b <
1

2Bp2 , (7)

a1 +A1 <

√
1−2p2bB

2peδh
, (8)

sup
t∈R+

a(t) <
1

4p
− 1

2
pbB− p(a1 +A1)2, (9)

and the stabilizing feedback control is given by

u(t) =−1
2

BT(t)P(t)x(t), (10)

whereP(t) ∈M(Rn
+) is the solution of the RDE (6) with any

initial conditionP0 ≥ 0.

Note that ifA1(t) = 0, f (t,x,y,u) = 0, i.e.,a(t) = a1(t) =
b(t) = 0, the conditions (7)- (9) automatically hold and then
Theorem 2.1 can be applied to the linear control system
[A(t),B(t)] in finite-dimensional spaces as follows.

Corollary 2.1. The finite-dimensional linear control system
[A(t),B(t)] is strongly stabilizable if it is GNC in finite time.

Remark 2.1. Corollary 2.1 extends a result of Wonham
1967 to time-varying case and it improves a result of Ikeda
et al. 1972, where the controllability assumption was as-
sumed to be more strict: the uniform global controllability.

From the proof of Theorem 2.1, the following procedure
of finding stabilizing feedback control can be applied:

Step 1.Verify the GNC of linear control system[A(t),B(t)]
by Proposition 2.1.



Step 2.For givenδ > 0, find the solutionP(t) ∈M(Rn
+) of

RDE (6).

Step 3.Compute the numbersp,b,B,A1,a1 and check the
conditions (7)-(9).

Step 4. The stabilizing feedback controlu(t) is given by
(10).

Example 2.1.Consider the nonlinear control delay system
(3) in R2, whereh = 1

8,δ = 2 and

A(t) =
( 1

20e−4t sin2 t−5e4t 0
0 1

20e−4t cos2 t−5e4t

)
,

A1(t) =

(
e−

1
2 t sint 0

0 e−
1
2 t cost

)
,B(t) =

(
sint 0
0 cost

)
,

f (t,x,x(t−h),u) = xsin2 t +e−
1
2 tx(t−h)+e−

9
2 tu.

We havea(t) = sin2 t, a1(t) = e−
1
2 t , b(t) = e−

9
2 t . We

can easily verify the GNC of the linear control system
[A(t),B(t)] by Proposition 3.1 (ii), rank[M0(t2),M1(t2)] =
2, with t0 = π

2 . On the other hand, forδ = 2, and for the de-
fined matricesÃ(t),B(t),upon some computations we can
find that the solutionP(t) of the RDE (6) is given by

P(t) =
( 1

10e−4t 0
0 1

10e−4t

)
.

Thus, computing the numbersb,B, p,a1,A1, we verify the
conditions (7)-(9). The system is then2−stabilizable with
the feedback control

u(t) =−1
2

( 1
10e−4t sint 0

0 1
10e−4t cost

)
.

3   INFINITE-DIMENSIONALSYSTEMS

We now consider the system (3) in infinite-dimensional
spaces:x∈ X,u∈U ;X,U− are real Hilbert spaces, for ev-
ery t ∈R+,A(t) : X→X, t ∈R+ is a linear operator,A1(t)∈
L(X),B(t) ∈ L(U,X), f (t,x,y,u) : R+ × X × X ×U → X.
Throughout this section we consider the class of admissi-
ble controlsu(t) ∈ L2([0,T],U) for everyT > 0. As in [2,
7], for guarantying the existence of the solution of infinite-
dimensional control system (3), throughout this section we
assume that

B.1. The operator functionsA(.)x,A1(.)x ∈ L(X),B(.)u ∈
L(U,X), f (.,x,y,u), t ∈ R+ are continuous on[0,∞) for ev-
eryx∈ X,y∈ X,u∈U.

B.2. The linear operator functionA(t) : X → X,
cl(D(A(t))) = X, generates an evolution semigroup oper-
atorU(t,s) (see Pazy 1983).

B.3. The nonlinear function f (t,x,y,u) satisfies the
condition: there exist non-negative continuous functions
a(t),a1(t),b(t) : R+ → R+ such that

‖ f (t,x,y,u)‖ ≤ a(t)‖x‖+a1(t)‖y‖+b(t)‖u‖,

for all (t,x,y,u)∈R+×X×X×U. In this case, the mild so-
lution of the nonlinear system (1) in Hilbert space is given
by

x(t,φ) = U(t,0)φ(t)+
∫ t

0
U(t,τ)

[
A1x(τ−h)+B(τ)u(τ)

+ f (τ,x(τ),x(τ−h),u(τ))
]
dτ.

Before proceeding further, we state the following well-
known infinite-dimensional controllability criterion, which
will be used later.

Proposition 3.1. (Conti 1982)Infinite-dimensional linear
control system[A(t),B(t)] is GNC iff existT > 0,c> 0 such
that

∫ T

0
‖B∗(s)U∗(T,s)x∗‖2ds≥ c‖U∗(T,0)x∗‖2,

for all x∗ ∈ X∗.

Associated with the infinite-dimensional linear control
system[A(t),B(t)], we consider a Riccati operator equation
(ROE) described formally by the form

Ṗ+A∗P+PA−PBB∗P+Q = 0. (11)

SinceA(t), t ∈R+ is an unbounded operator, the solution of
ROE will be defined as follows.

Definition 3.1. The solution of ROE (13) is a linear opera-
tor functionP(t) ∈ L(X) satisfying the following two con-
ditions: (i) The scalar function〈P(·)x,y〉 is continuously
differentiabe on[0,∞) for everyx,y ∈ D(A(.)). (ii) For all
x,y∈ D(A(t)), t ∈ R+ :

d
dt
〈Px,y〉+ 〈Px,Ay〉+ 〈PAx,y〉−〈PBB∗Px,y〉

+〈Qx,y〉= 0.

The existence problem of the solution of ROE (13) in
infinite-dimensional case was studied (see; e.g. Boyd 1994,
Bittanti et al. 1991, Ginson 1983, Lion 1971, Ootstveen et
al. 1998). We first state the following sufficient condition
guaranteed the existence of a bounded solutionP(t) of ROE
(13), which is given in Prato et al. 1990 as follows.

Proposition 3.2. Let Q(t) ∈ LO([0,∞),X+) be a bounded
operator function. If linear control system[A(t),B(t)] is
Q(t)−stabilizable in the sense that for every initial statex0,



there is an admissible controlu(t) ∈ L2([0,+∞),U) such
that the cost function

J(u) =
∫ ∞

0
[‖u(t)‖2 + 〈Q(t)x(t,x0),x(t,x0)〉]dt, (12)

exists and is finite, then the ROE (13) with any initial con-
dition P0≥ 0 has the solutionP(t) ∈ LO([0,∞),X+), which
is also a bounded onR+ function.

The following proposition will play a key role in the
derivation of the existence of the solution of ROE (13) from
the global null-controllability of the system[A(t),B(t)].

Proposition 3.3. If linear control system[A(t),B(t)] is
GNC in finite time, then for any bounded operator func-
tion Q(t) ∈ LO([0,∞),X+), the ROE (13) withP0≥ 0 has a
bounded solutionP(t) ∈ LO([0,∞),X+).

Theorem 3.1.Assume the conditions B.1- B.3. Assume that
linear control system[A(t),B(t)] is GNC in finite time. The
infinite-dimensional nonlinear control delay system (3) is
δ−stabilizable if the following conditions hold:

0 < b <
1

2p2B
, a1 +A1 <

√
1−2p2bB

2peδh
(13)

sup
t∈R+

a(t) <
1

4p
− 1

2
pbB− p(a1 +A1)2. (14)

The stabilizing feedback control is given by

u(t) =−1
2

BT(t)P(t)x(t), (15)

whereP(t) is the solution of the ROE (15) with any initial
conditionP0 ≥ 0.

Remark 3.1. It is worth noticing that Theorem 3.1 im-
proves a result of Phat Linh 2003, where the growth condi-
tion on the nonlinear perturbationf (.) without state delays
was strictly assumed that:

‖ f (t,x,y,u)‖ ≤ a(t)‖x‖+b(t),

for all (t,x,y,u) ∈ R+×X×X×U.

Note that if f (t,x,y,u) = 0, i.e. a = b = a1 = 0, we have
the following obvious consequence.

Corollary 3.1. Assume that the infinite-dimensional linear
control system[A(t),B(t)] is GNC in finite time. The linear
control delay system

ẋ(t) = A(t)x(t)+A1(t)x(t−h)+B(t)u(t),

is δ− stabilizable if0 < A1 < 1
2peδh .

In the case ifA1(.) = 0, f (t,x,y,u) = 0, the conditions
(16), (17) automatically hold and then we have the follow-
ing subsequence for the strong stabilizability of linear con-
trol system, which extends the result of Megan 1975, Slem-
rod 1974 to the time-varying case.

Corollary 3.2. The infinite-dimensional linear control sys-
tem

ẋ(t) = A(t)x(t)+B(t)u(t),

is strongly stabilizable if the system is GNC in finite time.

Example 3.1.Consider system (3) in the Hilbert spacesl2,
where

A(t) : (x1,x2, ...) ∈ l2 −→ (
1
8

e−4t −2e4t)(x1,x2, ...) ∈ l2,

A1(t) : (x1,x2, ...) ∈ l2 −→ e−
1
2t (x1,x2, ...) ∈ l2,

B(t) : (u1,u2, ...) ∈ l2 −→ e−2t(u1,u2, ...) ∈ l2,

f (t,x,y,u) =
1
3

xsin2 t +
1
3

e−
1
2 ty+

4
5

e−
9
2 tu, ∀t ≥ 0.

We have

a(t) =
1
3

sin2 t, a1(t) =
1
3

e−
1
2 t , b(t) =

4
5

e−
9
2 t .

To verify the GNC of the system[A(t),B(t)] we first find
the evolution operatorU(t,s). Upon some computations we
find thatU(t,τ) = [ui j ], where

u11(t,τ) = e−
1
32(e−4t−e−4τ)− 1

2(e4t−e4τ).

u22(t,τ) = e−
1
32(e−4t−e−4τ)− 1

2(e4t−e4τ).

unn(t,τ) = e−
1
32(e−4t−e−4τ)− 1

2(e4t−e4τ).

Therefore, defining‖U∗(T,0)x∗‖2, and‖B∗(τ)U∗(T,τ)x∗‖2,
and applying Proposition 3.1, wherec = 0.08,T = 1, we
can verify the GNC of the system[A(t),B(t)]. On the other
hand, we havẽA(t)x = (1

8e−4t −2e4t +2)x, the ROE

Ṗ(t)+ Ã∗(t)P(t)+P(t)Ã(t)−P(t)B̃(t)B̃∗(t)P(t)+ I = 0,

has the solution

P(t) =
(1

4e−4t 0
0 1

4e−4t

)
.

and all the conditions (16),(17) are satisfied with

b = 4/5, p = 1/4, a1 = 1/3, A1 = 1.

By Theorem 3.1, the system is2− stabilizable.



4 CONCLUSIONS

In this paper, based on the controllability of the nominal lin-
ear control system, sufficient conditions depending on the
size of the delay for the strong stabilizability have been
established by solving a standard Riccati matrix/operator
equation. A constructive procedure for finding the stabiliz-
ing feedback control and illustrative examples of the results
are given. It is worth mentioning that the results presented in
this paper do not involve multiple delays as well as the con-
straints on both the state and control of the system. These
issues will be the subject of the future investigations.
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