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Abstract. The paper is devoted to establishing strong consistency of estimates of
nonlinear characteristics of dynamic stochastic systems. To describe the shape of the
nonlinearities, regression functions, i.e. conditional expectations of a random variable
with respect to another one, are used. In turn, the nonlinear regression functions are
estimated by algorithms using the kernel-type approaches, which are suitable under fairly
mild assumptions with respect to the system description. Within the approach, the key
issue of the present paper is considering a case of mutually dependent observations in
contrast to conventional nonparametric approaches based on regression estimates, which
impose rather restrictive limitations on sampled data, e.g. mutual independence, various
mixing conditions, etc., while such assumptions are not always acceptable within
dynamic system considerations.  Copyright © 2005 IFAC
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1. PROBLEM STATEMENT

Let a dynamic stochastic discrete-time system be
described by the following extended state-space
equation

( )][],1[;][ tettt −ΧΞ=Χ ,                 (1)

with ( )Ttttt ][,],[],[][ 21 Ν=Χ χχχ K  standing for
the extended state vector involving both the system
state variables as well as the system input and output
variables; e[t] standing for a white-noise process, i.e.
e[t] and e[s] are mutually independent. The process
e[t] values are assumed to be bounded with
probability 1 by a constant C, i.e. Cte <][ almost
surely, while the magnitude of C does not matter.
The only requirement is that the constant C exists
and is less than infinity. Also, the function

( )⋅⋅⋅Ξ ,;  is assumed to be bounded in its

arguments. These two assumptions thus imply the
components of the state vector ][tΧ  to be bounded

in modulus almost surely. And, finally, system (1) is
assumed to be exponentially stable.

The aim of the paper is to consider convergence
properties of a recursive estimate of the regression
function
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Here 






⋅
⋅M  stands for the conditional

mathematical expectation. As such an estimate, the
following kernel-type recursive algorithm is
considered (represented by formulae (3) and (4))
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The ratio 0
0  is considered as 0. In the algorithms,

K(⋅) is a Borel kernel function, { }][th  is a positive
number sequence such as
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.                       (5)

The bounded and nonnegative Borel kernel K(u)
satisfies the following two conditions
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There exists a wide class of kernels satisfying
conditions (6). In particular, the following functions
belong to this class:
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Remark. For a conventional kernel estimate, h[t]
tends to zero,

0][lim →
∞→

th
t

.                        (8)

The main difference between conventional recursive
kernel regression estimators and algorithm (3) to (5)
just lies in using condition (5) rather than (8).

Another suitable algorithm to estimate regression
function (2) is even simpler and has the form
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with Equations (9) and (10) to be complemented by
condition (5).

2. MAIN RESULT

In general, the problem of estimating nonlinear
regression function is well-known, and

corresponding estimation method using kernel
functions was originally proposed by Nadaraya
(1964) and Watson (1964) for mutually independent
observations. In sequel, such an estimate has been
considerably developed by many authors. However,
most of the papers as well as the original ones deal
with the case of independent observations of
variables, while such an assumption is not suitable
within dynamic systems, at least when made with
respect to the output processes, since for them
dependence of observations is always inherent.

Further studies on nonlinear regression estimation by
dependent observations (Andrews, 1995, Bianco and
Boente, 1998, Bierens, 1983, Bosq, 1997a, 1997b,
Cheze et al., 2003, Collomb and Hardle, 1986,
Devroye and Wagner, 1980, Ferraty et al., 2002,
Georgiev, 1984, Greblicki and Pawlak, 1989, Hall
and Van Keilegom, 2003, Hasiewicz, 2001, Herbster,
2001, Juditsky et al., 1995, Krzyzak, 1993, 1996,
2001, Masry, 1997, Masry, and Tjostheim, 1997,
Matzner-Loder et al., 1998, Peteret al., 2003, Rios,
1997, Robinson, 1986, Ruiz and Guillamon, 1996,
Stenman and Gustafsson, 2001, Yakowitz, 1985) can
be subdivided into the following two large classes.
The first one involves deriving estimates converging
in probability, i.e. in weak sense, under independent
observations of the input variable. From a control
system theory point of view, such a condition
corresponds to using white-noise input process of
systems.

The second class involves estimates converging with
probability 1, i.e. in strong sense (strongly consistent
estimates) under strong mixing condition imposed on
input and output variables. The condition denotes
asymptotic independence of the future and the past
of the random processes and has the following form.
Let ( )tS ,∞−  and ( )∞+ ,ktS  be the σ-algebrae
generated by a random process u[s], i.e.

( ) { }tssutS <=∞− ],[, σ ,

( ) { }ktsuktS +≥=∞+ ][, σ .

Here ( )tS ,∞−  is interpreted as the past of the
process u[s], and ( )∞+ ,ktS , as its future. Then, the
random process u[s] is said to be strongly mixing
with the strong mixing coefficient α(k), if
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Here P{⋅} is the probability of the event {⋅}. Besides
this, approaches within the second class of estimates
assume the observed random processes to be strongly
stationary.

In contrast to the above assumptions, the main
subject of the present paper is the following theorem:
Let system (1) and its components meet the
conditions described in Section 1. Then, for any
initial approximation ]0[ijXm , algorithms (3) to (5)
and (9), (10), (5) converge with probability 1 to a



function )(XijhΦ  depending on the parameter h
from (5), with
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Note that the magnitude of the parameter h in (5)
may be chosen a priori and may be as small as
required, i.e. it has only theoretical sense. Thus, in
practice, the values of the function )(XijhΦ  and

regression 
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identical.

The idea of the theorem proof is based on a
consideration, that, for any fixed X, the regression
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χM  may just be interpreted as a

“parameter” subject to identification. Hence,
investigating strong consistency of recursive scheme
(3) to (5) may be based on applying such a powerful
tool as Ljung’s Ordinary Differential Equation
(ODE) method (Ljung, 1975). Its conditions relating
to non-liner systems are presented in Appendix The
entity of the method is substituting investigation of
convergence properties of a recursive scheme by
investigating of an ordinary differential equation
solution associated with the scheme. Specifically, the
ODE method part relating to nonlinear systems is to
be used. To apply it, the corresponding ODE method
conditions are to be verified with respect to system
(1) and algorithm (3) to (5) (algorithm (9), (10), (5))
description.

3. THE THEOREM PROOF

To verify Ljung’ ODE method conditions (presented
in Appendix), let, at first, note estimate (3), (4) to be
represented in the form
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Formally, in terms of the ODE method, relationships
(12), (13) may be rewritten in the form of (A1)
where θ, γ, and Q are as follows

T

jXijX ttt
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t
t 1][ =γ ,                            (15)

( ) =Χ− ][],1[; tttQ θ ( ) ]1[][;~ −−Χ tttQ θ    (16)

where
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and the following notation is used:

( )
321K43421K

ll

T
l

−Ν−

= 0,,0,1,0,,0
1

1  for any Ν= ,,2,1 Kl .

Complemented by system description (1), Equations
(14) to (16) are to be verified to meet the ODE
presented in the Appendix. method conditions. This
is straightforward: conditions (A1), (A2), (A7),
(A15) are met by definition; conditions (A3) to (A6)
are obvious; conditions (A9) to (A13) are also met
by system description and since Equation (1) does
not depend on θ at all. Condition (A8) is met under
an appropriate choice of the kernel functions, i.e.
these are to be continuously differentiable.

Note, that, strictly speaking, not all of functions (7)
may formally be implemented within algorithm (3)
to (5) since some of them do not meet condition
(A8). However, smooth approximations which are as
close to the “original” ones as required may be used
instead of them. Thus, from a computational point of,
there will be found no difference at all.

Again, based on Equation (16) and in accordance
with condition (A14), it, formally, follows
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Thus, the ODE method may be applied, what leads to
the following differential equation
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The asymptotically stable solution of Equation (18)

is, obviously, 
T
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ΜΜ . Hence, by the ODE

method theorem,
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with probability 1.

Then, the following lemma from Greblicki and
Pawlak (1989) is to be applied:

Let the bounded Borel kernel satisfy conditions (6).
Then, for a pair of random variables ( )UY ,  the
following limit relationships hold
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Simultaneously,
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where p(u) stands for the distribution density of U.

Thus, taking into account Equation (11) completes
the proof.

Proving strong consistency of algorithm (9), (10), (5)
is implemented in the same manner.

4. CONCLUSIONS

A nonparametric approach to system
identification/estimation has been considered. The
approach assumes the investigated dynamic system
model to be nonlinear and to be identified by current
estimation of nonlinear characteristics, with the
characteristics not allowing finite parameterization.
Within the approach, the recursive estimates are
obtained which converge in strong rather than weak
sense, with no specific conditions on the output and
input processes of the investigated system being
imposed. The only “specific” conditions used assume
values of the input and output processes to be
bounded by some constants, with magnitudes of the
constants being not essential. The constants are not
required to be known and only hypothetical existence
of the bounds is assumed. In entity, such a condition
is not a limitation at all, from a practical point of
view, since real-world system processes are always
bounded.

APPENDIX.
LJUNG’ ODE METHOD CONDITIONS

Following to Ljung (1975), consider the following
“state space” representation of a stochastic
approximation algorithm represented by conditions
(A1) and (A2).

( )][],1[;][]1[][ tttQttt Χ−+−= θγθθ ,   (A1)
( )][],1[],1[;][ tetttt −−ΧΨ=Χ θ .      (A2)

In (A1), the sequence )(tγ  meets the following
conventional conditions (A3) to (A6)
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Let, again, the function ( )⋅⋅⋅Ψ ,,  be bounded for each
][tθ , Χ[t], and e[t], i.e.

( ) Ctettt <−−ΧΨ ][],1[],1[; θ     (A7)

e,Χ∀ RD∈∀θ ,

with C being able to depend on RD , where RD  is a
set.

It is also assumed:
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Let, for any θ , the vector ),( θtΧ  be defined as
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and let alsoΨ  possesses the property
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This means that small variations in θ in (A2) are not
amplified to a higher magnitude for the observations
Χ.

Remark. One should be noted here that within the
paper, conditions (A10) to (A12) are always valid
since Ψ  does no depend on θ .

Again, let ),( θtiΧ  be solutions of (A10) with
0),( ii s Χ=Χ θ , 2,1=i . Then let SD  be defined as

the set of all θ  for which the following inequality
holds

<Χ−Χ ),(),( 21 θθ tt

( ) )(, 0
2

0
1 θλ stC −⋅ΧΧ<                (A13)

where st >  and 1)( <θλ . This is the region of
exponential stability of (A2).

Let, again, there exists the function Q expectation
limit

)(),(,;lim θθθ fttQ
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for RD∈θ , with the mathematical expectation
being taken over e[t].

Finally,

iablesrandom
tindependenofsequenceaiste
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   (A15)

Consider algorithm (A1) to (A6) under assumptions
(A7) to (A15). Let RD  be an open connected subset
of SD . Then the following theorem holds for the
algorithm:

Assume the ODE

( ))()( τθτθ
τ

DD f
d
d =

( )(τθ D  will always refer to the solution of the
ODE, while )(tθ are the estimates generated by
algorithm (A1) to (A6)) to have a stationary point

*θ  which is an asymptotically stable solution with
domain of attraction RA DD ⊃ , i.e. for all initial

values in AD , the solution of the ODE tends to *θ
as ∞→τ ). It is also assumed that RD  can be taken
so that solutions of the ODE that start in RD  remain

in there for 0>τ . Then *)( θθ →t  with
probability 1 as ∞→t .

REFERENCES

Andrews, D.W.K. (1995). “Nonparametric kernel
estimation for semiparametric models”, Econ.
Theory, 11, pp. 560-596.

Bianco, A., and G. Boente (1998). “Robust kernel
estimators for additive models with dependent
observations”, Can. J. Statist., 26, pp. 239-255.

Bierens, H.T. (1983). “Uniform consistency of
kernel estimators of regression function under
generalized conditions”, J. Amer. Statist. Assoc.,
78, pp. 699-707.

Bosq, D. (1997a). “Parametric rates of nonparametric
estimators and predictors for continuos time
processes”, Ann. Statist., vol. 25, pp. 982-1000.

Bosq, D. (1997b). “Nonparametric Estimation and
Prediction for Continuous time Processes”,
Nonlinear Analysis, 30, no. 6, pp. 3547-3551.

Cheze, N., J.-M. Poggi and B. Porter (2003). “Partial
and Recombined Estimators for Nonlinear
Additive Models”, Statistical Inference for
Stochastic Processes, 6, no. 2, pp. 155-197.

Collomb, G. and W. Hardle (1986). “Strong uniform
convergence rates in robust nonparametric time
series analysis and prediction: Kernel regression
estimation from dependent observations”,
Stochastic Processes Appl., 23, pp. 77-89.

Devroye, L. and T.J. Wagner (1980). “On the L1
convergence of the kernel estimators of
regression function with applications in
discrimination”, Z. Wahrscheinlichkeitstherie
ver. Gebiete., 51, pp. 18-25.

Ferraty, F., A. Goia, and Ph. Vieu (2002).
“Régression non-paramétrique pour des
variables aléatoires fonctionnelles mélangeants”,
C. R. Acad. Sci. Ser. 1, 334, no. 3, pp. 217-220.
(in French)



Georgiev, A. (1984). “Nonparametric system
identification by kernel methods”, IEEE Trans.
Automatic Control, AC-29, pp. 356-358.

Greblicki, W. and M. Pawlak (1989). “Recursive
nonparametric identification of Hammerstein
systems”, J. Franklin Institute, 326, pp. 461-
481.

Hall, P. and I. Van Keilegom (2003). “Using
difference-based methods for inference in
nonparametric regression with time series
errors”, Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 65, no. 2, pp.
443-456.

Hasiewicz, Z. (2001). “Non-parametric estimation of
non-linearity in a cascade time-series system by
multiscale approximation”, Signal Processing,
vol. 81, no. 4, pp., 791-807.

Herbster, M. (2001). “Learning Additive Models
Online with Fast Evaluating Kernels”, Lecture
Notes in Computer Science, 2111.

Juditsky, A., H. Hjalmarsson, A. Benveniste, B.
Delyon, L. Ljung, J. Sjoberg, and Z. Qinghua
(1995) “Nonlinear Black-box Models in System
Identification: Mathematical Foundations”,
Automatica, 31, no. 12, pp. 1725-1750.

Krzyzak, A. (1993). “Identification of nonlinear
block-oriented systems by the recursive kernel
estimate”, J. Franklin Institute, 330, pp. 605-
627.

Krzyzak, A. (1996). “On nonparametric estimation
of nonlinear dynamic systems by the Fourier
series estimate”, Signal Processing, 52, no. 3 pp.
299-321.

Krzyzak, A. (2001). “Nonlinear Function Learning
and Classification Using Optimal Radial Basis
Function Networks”, Lecture Notes in Computer
Science, 2123.

Ljung L. (1975). “Theorems for the asymptotic
analysis of recursive stochastic algorithms”,
Report 7522, December 1975, Department of
Automatic Control, Lund Institute of
Technology.

Masry, E. (1997). “Multivariate regression
estimation: local polynomial fitting for time
series”, Nonlinear Analysis, 30, no. 6, pp. 3575-
3581.

Masry, E., and D. Tjostheim (1997). “Additive
nonlinear ARX time series and projection
estimates”, Econ. Theory, 13, pp. 214-252.

Matzner-Loder E., A. Gannoun and J.G. De Gooijer
(1998). “A comparison of three kernel-based
methods”, Commun. Statist. Theory and Meth.,
27, pp. 1563-1617.

Nadaraya, E.A. (1964). “On estimating regressions”,
Theor. Probability Appl., 9, pp. 141-142.

Peterson D.R., Hongwei Zhao, and S. Eapen (2003).
“Using Local Correlation in Kernel-Based
Smoothers For Dependent Data”, Biometrics,
59, no. 4, pp. 984-991.

Rios, R. (1997). “On the bias in local polynomial
regression estimation for dependent data”, C. R.
Acad. Sci. Ser. 1, 324, pp. 117-122.

Robinson, P.M. (1986). “On the consistency and
finite-sample properties of nonparametric kernel
time-series regression, auto-regression and

density estimators”, Ann. Inst. Statist. Math.
Part A, 38. pp. 539-549.

Ruiz, J.M. and A. Guillamon (1996).
“Nonparametric recursive estimator for mean
residual life and vitality function under
dependence conditions”, Commun. Statist.
Theory and Meth., 25, pp. 1997-2011.

Stenman, A. and F. Gustafsson (2001). “Adaptive
smoothing methods for frequency-function
estimation”, Automatica, 37, no. 5, pp. 675-685.

Watson, G.S. (1964). “Smooth regression analysis”,
Sankhya. Ser. A, 26, pp. 355-372.

Yakowitz, S. (1985). “Nonparametric density
estimation, prediction and regression for Markov
sequences”, J. Amer. Statist. Assoc., vol. 80, pp.
215-221.


