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Abstract: In this paper, we examine the parametrization of all stabilizing multi-
period repetitive controllers with the specified frequency characteristics. The
parametrization of all stabilizing multi-period repetitive controllers, those are used
to improve the disturbance attenuation characteristics of the repetitive controller,
for non-minimum phase systems was solved by Yamada et al. However, when
we design a stabilizing modified repetitive controller using the parametrization
by Yamada et al., the frequency characteristics of the control system cannot be
settled so easily. From the practical point of view, the frequency characteristics
of the control systems are required to be easily settled. This problem is solved by
obtaining the parametrization of all stabilizing multi-period repetitive controllers
with the specified frequency characteristics. However, no paper has proposed
the parametrization of all stabilizing multi-period repetitive controllers with the
specified frequency characteristics. In this paper, we expand the result by Yamada
et al. and propose the parametrization of all stabilizing multi-period repetitive
controllers with the specified frequency characteristics. Copyright c©2005 IFAC
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1. INTRODUCTION

In this paper, we investigate the parametriza-
tion of all stabilizing multi-period repetitive con-
trollers with the specified frequency characteris-
tics. The parametrization problem is to find all
stabilizing controllers (Youla et al., 1976; Kucera,
1979; Dedoer et al., 1980; Glaria and Goodwin,
1994; Vidyasagar, 1985). First, the parametriza-
tion of all stabilizing modified repetitive con-
trollers which follows the periodic reference input
with small steady state error even if there exists
a periodic disturbance or the uncertainty of the
plant was studied by (Hara and Yamamoto, 1986).
In (Hara and Yamamoto, 1986), since the sta-
bility sufficient condition of repetitive control
system is decided as H∞ norm problem, the

parametrization for repetitive control system is
given by resolving into the interpolation prob-
lem of Nevanlinna-Pick. Katoh and Funahashi
gave the parametrization of all stabilizing repet-
itive controllers for minimum phase systems by
solving exactly Bezout equation (Katoh and Fu-
nahashi, 1996). However, Katoh and Funahashi
(Katoh and Funahashi, 1996) assumed the plant
is asymptotically stable. This implies that they
gave the parametrization of all causal repetitive
controllers for an asymptotically stable and min-
imum phase plant. That is, they do not give
the explicit parametrization for minimum phase
systems (Katoh and Funahashi, 1996). In addi-
tion, in (Katoh and Funahashi, 1996) it is as-
sumed that the relative degree of low-pass filter



in the repetitive compensator is equal to that of
the plant. Extending the results in (Katoh and
Funahashi, 1996), Yamada and Okuyama gave
the parametrization of all stabilizing repetitive
controllers for minimum phase systems (Yamada
and Okuyama, 2000). Yamada et al. gave the
parametrization of all stabilizing repetitive con-
trollers for the certain class of non-minimum
phase systems (Yamada et al., 2002a). They ob-
tained the parametrization of all repetitive con-
trollers using fusion of the parallel compensa-
tion technique and the solution of Bezout equa-
tion. However, they gave the parametrization of
all repetitive controllers for limited class of non-
minimum phase systems. Yamada et al. gave the
complete parametrization of all stabilizing modi-
fied repetitive controllers for non-minimum phase
single-input/single-output systems (Yamada et
al., 2002b). In addition, the parametrization of all
stabilizing repetitive controllers for non-minimum
phase multivariable systems was considered in
(Yamada et al., 2004a). The parametrization of
all stabilizing multi-period repetitive controllers
for non-minimum phase systems which is used
to improve the disturbance attenuation charac-
teristics of the repetitive controller was solved in
(Yamada et al., 2004b). However, when we design
a stabilizing modified repetitive controllers using
the parametrization in (Yamada et al., 2004b),
the frequency characteristics of the control sys-
tem cannot be settled so easily. From the prac-
tical point of view, the frequency characteristics
of the control systems are required to be eas-
ily settled. This problem is solved by obtaining
the parametrization of all stabilizing multi-period
repetitive controllers with the specified frequency
characteristics. However, no paper has proposed
the parametrization of all stabilizing multi-period
repetitive controllers with the specified frequency
characteristics.

In this paper, we expand the result in (Yamada
et al., 2004b) and propose the parametrization of
all stabilizing multi-period repetitive controllers
with the specified frequency characteristics. The
basic idea to obtain the parametrization of all
stabilizing multi-period repetitive controllers with
the specified frequency characteristics is very sim-
ple. If the multi-period repetitive controller sta-
bilizes the plant, then the multi-period repet-
itive controller must be included in the class
of all stabilizing controllers for the plant. The
parametrization of all stabilizing controllers for
the plant are obtained using the method in (Youla
et al., 1976; Vidyasagar, 1985). The parametriza-
tion of all stabilizing controllers include the free
parameter, which is the set of stable causal func-
tion. That is, the parametrization of all stabi-
lizing multi-period repetitive controllers with the
specified frequency characteristics can be designed

using the free parameter in the parametrization.
Using this idea, we obtain the parametrization of
all stabilizing multi-period repetitive controllers
with the specified frequency characteristics.

NOTATIONS

R the set of real numbers.
R(s) the set of real rational functions with s.
RH∞ the set of stable proper real coefficient

rational functions.
H∞ the set of stable causal function.
U the unimodular procession in H∞. That

is, U(s) ∈ U means that U(s) ∈ H∞
and 1/U (s) ∈ H∞.

2. PROBLEM FORMULATION

Consider the unity feedback control system in

{
y = G(s)u
u = C(s) (r − y) , (1)

where G(s) ∈ R(s) is the single-input/single-
output plant, G(s) is assumed to be coprime. C(s)
is the multi-period repetitive controller defined
later, y ∈ R is the output and r ∈ R is the periodic
reference input with period T satisfying

r(t + T ) = r(t) ∀t ≥ 0. (2)

According to (Gotou et al., 1987), the multi-
period repetitive controller C(s) in (1) is written
by the form in

C(s) = C0(s) +

N∑
i=1

Ci(s)qi(s)e−sTi

1 −
N∑

i=1

qi(s)e−sTi

, (3)

where N is arbitrary positive integer, C0(s) ∈
R(s), Ci(s) �= 0 ∈ R(s)(i = 1, . . . , N), qi(s) ∈
RH∞(i = 1, . . . , N) are low-pass filter satisfying∑N

i=1 qi(0) = 1 and Ti ∈ R(i = 1, . . . , N).

From (Gotou et al., 1987), it is note that if low-
pass filter qi(s)(i = 1, . . . , N) satisfy

1 −
N∑

i=1

qi(s) = 0 ∀s = jωk(k = 0, . . . , N) (4)

ωk =
2πk

T
(k = 0, . . . , N), (5)

then the output y in (1) follows reference in-
put r with small steady state error. In order
for qi(s)(i = 1, . . . , N) to satisfy (4) in wide
frequency range, qi(s)(i = 1, . . . , N) must be



stable and of minimum phase. Using result in
(Yamada et al., 2004b), it is difficult to settle
qi(s)(i = 1, . . . , N) to be stable and of mini-
mum phase. If we obtain the parametrization of
all stabilizing multi-period repetitive controllers
such that qi(s)(i = 1, . . . , N) in (3) is settled
beforehand, we can easily design the multi-period
repetitive controller in (3) satisfying (4). Since
qi(s)(i = 1, . . . , N) works to specify the frequency
characteristics of the control system in (1), we call
the parametrization of all stabilizing multi-period
repetitive controllers such that qi(s)(i = 1, . . . , N)
in (3) is settled beforehand the parametrization
with specify the frequency characteristics.

The problem considered in this paper is that when
the low-pass filter qi(s)(i = 1, . . . , N) in (3) is set-
tled beforehand, we find the parametrization of all
stabilizing multi-period repetitive controllers with
the specified frequency characteristics written in
(3) such that the system in (1) is internally stable.

3. THE PARAMETRIZATION OF ALL
STABILIZING MULTI-PERIOD REPETITIVE

CONTROLLERS WITH THE SPECIFIED
FREQUENCY CHARACTERISTICS

In this section, we give the parametrization of all
stabilizing multi-period repetitive controllers with
the specified frequency characteristics.

In order to obtain the parametrization of all
multi-period repetitive controllers with the speci-
fied frequency characteristics, qi(s) ∈ RH∞(i =
1, . . . , N) is assumed to be settled beforehand.
The parametrization of all multi-period repetitive
controllers with the specified frequency charac-
teristics written by the form in (3) such that
the system in (1) is internally stable is given by
following theorem.

Theorem 1. The parametrization of all repetitive
controllers written by the form in (3) such that
the control system in (1) is internally stable if and
only if C(s) is written by

C(s) =
X̃(s) + D(s)Q(s)
Ỹ (s) − N(s)Q(s)

, (6)

where N(s) ∈ RH∞, D(s) ∈ RH∞, Ñ(s) ∈ RH∞
and D̃(s) ∈ RH∞ are coprime factors of G(s) on
RH∞ satisfying

G(s) = N(s)D−1(s) = D̃−1(s)Ñ (s). (7)

X̃(s) and Ỹ (s) are RH∞ function satisfying

[
Y (s) X(s)
−Ñ(s) D̃(s)

] [
D(s) −X̃(s)
N(s) Ỹ (s)

]
= I, (8)

where X(s) and Y (s) are RH∞ function. Q(s) ∈
H∞ is written by

Q(s) =

Qn0(s) +
N∑

i=1

Qni(s)qi(s)e−sTi

Qd0(s) +
N∑

i=1

Qdi(s)qi(s)e−sTi

, (9)

where Qn0(s), Qd0(s) �= 0, Qni(s)(i = 0, · · · , N),
Qdi(s)(i = 0, · · · , N) are any RH∞ functions
satisfying

Ỹ (s)(Qd0(s) + Qdi(s))

−N(s)(Qn0(s) + Qni(s)) = 0(i = 1, . . . , N)

(10)

and

X̃(s)(Qd0(s) + Qdi(s))

+D(s)(Qn0(s) + Qni(s)) �= 0(i = 1, . . . , N).

(11)

Proof of this theorem requires following lemma.

Lemma 1. Unity feedback control system in

{
y = G(s)u
u = −C(s)y (12)

is internally stable if and only if C(s) is written
by

C(s) =
X̃(s) + D(s)Q(s)
Ỹ (s) − N(s)Q(s)

, (13)

where N(s) ∈ RH∞, D(s) ∈ RH∞, Ñ(s) ∈ RH∞
and D̃(s) ∈ RH∞ are coprime factors of G(s) on
RH∞ satisfying

G(s) = N(s)D−1(s) = D̃−1(s)Ñ(s). (14)

X̃(s) and Ỹ (s) are RH∞ function satisfying (8)
and Q(s) ∈ H∞ is free parameter (Vidyasagar,
1985).

Using above Lemma 1, we shall show the proof of
Theorem 1.
(Proof) First, necessity is shown. That is, if the
controller written by (3) stabilize the control
system in (1), then C(s) and Q(s) are written
by (6) and (9), respectively. From Lemma 1, the
parametrization of all stabilizing controllers C(s)
for G(s) is written by (6). In addition, Q(s) ∈ H∞
is any function. In order to prove necessity, we
will show that if C(s) written by (3) stabilizes



the control system in (1), then the free parameter
Q(s) ∈ H∞ is written by (9). Substituting C(s)
in (3) into (6), we have

Q(s) =

Qn0(s) +
N∑

i=1

Qni(s)qi(s)e−sTi

Qd0(s) +
N∑

i=1

Qdi(s)qi(s)e−sTi

, (15)

where

Qn0(s) =
(
Ỹ (s)C0n(s) − X̃(s)C0d(s)

)
C̄d(s),

(16)

Qni(s) = −
(
Ỹ (s)C0n − X̃(s)C0d(s)

)
C̄d(s)

+Ỹ (s)C0d(s)C̄in(s) (i = 1, · · · , N),

(17)

Qd0(s) = (D(s)C0d(s) + N(s)C0n(s)) C̄d(s)

(18)

and

Qdi(s) = − (D(s)C0d(s) + N(s)C0n(s)) C̄d(s)

+N(s)C0d(s)C̄in(s) (i = 1, · · · , N).

(19)

Here, C0n(s) and C0d(s) are coprime factors of
C0(s) on RH∞ satisfying

C0(s) =
C0n(s)
C0d(s)

. (20)

C̄in(s) ∈ RH∞(i = 1, . . . , N) and C̄d(s) ∈ RH∞
are written by

C̄in(s) = Cin(s)
i−1∏
j=1

Cjd(s)
N∏

j=i+1

Cjd(s) (21)

(i = 1, . . . , N)

and

C̄d(s) =
N∏

i=1

Cid(s), (22)

respectively. Cin(s)(i = 1, · · · , N) and Cid(s)(i =
1, · · · , N) are coprime factors of Ci(s)(i = 1, · · · , N)
on RH∞ satisfying

Ci(s) =
Cin(s)
Cid(s)

(i = 1, · · · , N). (23)

Since N(s) ∈ RH∞, D(s) ∈ RH∞, X̃(s) ∈ RH∞,
Ỹ (s) ∈ RH∞, C0n(s) ∈ RH∞, C0d(s) ∈ RH∞,

C̄in(s) ∈ RH∞(i = 1, . . . , N) and C̄d(s) ∈ RH∞,
we find that Qn0(s) ∈ RH∞ in (16), Qni(s) ∈
RH∞(i = 1, . . . , N) in (17), Qd0(s) ∈ RH∞ in
(18) and Qdi(s) ∈ RH∞(i = 1, . . . , N) in (19).
From this expression and (15), we have proved
that if the controller written by (3) stabilize the
control system in (1), then the free parameter
Q(s) in (6) is written by (9). From the assumption
of Ci(s) �= 0 (i = 1, · · · , N), (11) holds true. From
(16) ∼ (19), (10) is satisfied.

Next the sufficiency is shown. That is, if Q(s) in
(6) is written by (9), then the controller C(s) is
written by (3) under the assumption of (10) and
(11). Substituting (9) into (6), we have

C(s) = C0(s) +

N∑
i=1

Ci(s)qi(s)e−sT i

1 −
N∑

i=1

qi(s)e−sTi

, (24)

where C0(s), Ci(s)(i = 1, · · · , N) are denoted by

C0(s) =
X̃(s)Qd0(s) + D(s)Qn0(s)
Ỹ (s)Qd0(s) − N(s)Qn0(s)

, (25)

Ci(s) =
X̃(s)(Qd0(s) + Qdi(s))

Ỹ (s)Qd0(s) − N(s)Qn0(s)
+D(s)(Qn0(s) + Qni(s)) (i = 1, · · · , N).

(26)

We find that if C(s) and Q(s) is settled by (6)
and (9), then the controller C(s) is written by the
form in (3). From (11), Ci(s) �= 0 hold true.

We have thus proved Theorem 1.

4. A DESIGN METHOD OF Q(S)

In this section, we present a design method of the
free parameter Q(s) satisfying Theorem 1. From
Theorem 1, Q(s) in (6) must be included in H∞.
Since Qn0(s) ∈ RH∞ and Qni(s) ∈ RH∞ in (9), if
1/
(
Qd0(s) +

∑N
i=1 Qdi(s)qi(s)e−sTi

)
∈ H∞, then

Q(s) ∈ H∞. Qd0(s) +
∑N

i=1 Qdi(s)qi(s)e−sTi is
rewritten by

Qd0(s) +
N∑

i=1

Qdi(s)qi(s)e−sTi

= Qd0(s)

(
1 +

N∑
i=1

Qdi(s)qi(s)
Qd0(s)

e−sTi

)
. (27)

From above equation and Rouche’s Theorem
(Levine, 1996), if Qd0(s) is settled to be included
in U and Qdi(s) ∈ RH∞ is settled satisfying



∥∥∥∥∥
N∑

i=1

Qdi(s)qi(s)
Qd0(s)

∥∥∥∥∥
∞

< 1, (28)

then Q(s) ∈ H∞.

5. NUMERICAL EXAMPLE

In this section, a numerical example is shown
to illustrate the effectiveness of the proposed
parametrization.

Let us consider to obtain the parametrization of
all stabilizing multi-period repetitive controllers
with the specified frequency characteristics for the
plant G(s) written by

G(s) =
−s + 400

s2 + 4s − 21
. (29)

Here, the period T of the reference input is T =
π/2[sec], N in (3) is N = 3. Using the method
of (Okuyama et al., 2002), Ti(i = 1, 2, 3) and
qi(s)(i = 1, 2, 3) in (3) are settled by

T1 = 1.5608, (30)

T2 = 3.2285, (31)

T3 = 4.6166, (32)

q1(s) =
1

0.01s + 1
, (33)

q2(s) =
1

0.01s + 1
· 0.047s(s2 + 42)

(s + 2)3
(34)

q3(s) =
1

0.01s + 1
· 0.047s(s2 + 42)

(s + 2)3

·25.3772(s2 + 82)
(s + 2)3

, (35)

respectively. D(s), N(s), X̃(s) and Ỹ (s) in (6) are
given by

D(s) = D̃(s) =
s2 + 4s − 21

s2 + 30s + 200
, (36)

N(s) = Ñ(s) =
−s + 400

s2 + 30s + 200
, (37)

X̃(s) = X(s) =
14.7349s + 96.0783

s2 + 30s + 200
(38)

and

Ỹ (s) = Y (s) =
s2 + 56s + 998.9967

s2 + 30s + 200
, (39)

respectively. According to Theorem 1, the parametriza-
tion of all stabilizing multi-period repetitive con-
trollers with the specified frequency characteris-
tics is written by (6) and (9).

In order to satisfy (10) and (11), Qn0(s), Qni(s)(i =
1, 2, 3), Qd0(s) and Qdi(s)(i = 1, 2, 3) in (9) are
settled by

Qn0(s) =
s2 + 56.1s + 992
s2 + 30s + 200

, (40)

Qni(s) =
−0.1s + 6.9967
s2 + 30s + 200

(i = 1, 2, 3), (41)

Qd0(s) =
0.01s2 + 4s + 400
s2 + 30s + 200

(42)

and

Qdi(s) =
−0.01s2 − 5s

s2 + 30s + 200
(i = 1, 2, 3). (43)

From the discussion in Section 4., since Qn0(s) ∈
RH∞, Qni(s) ∈ RH∞, Qd0(s) ∈ RH∞, Qdi(s) ∈
RH∞ and qi(s) ∈ RH∞ in (9), if (28) is satisfied,
then Q(s) in (9) is included in H∞. The bode plot

of
∑3

i=1
Qdi(s)qi(s)

Qd0(s)
is shown in Fig. 1 . Since∑3

i=1
Qdi(s)qi(s)

Qd0(s)
∈ RH∞, Fig. 1 shows that

(28) holds true. Therefore, Q(s) is included in
H∞.
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Fig. 1. Bode plot of
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Using the obtained multi-period repetitive con-
troller C(s), the response of the output y(t) in (1)
for the reference input r(t) = sin(4t) is shown in
Fig. 2 . Here, the solid line shows the response
of the output y(t) and the dotted line shows that
for reference input r(t). Fig. 2 shows that the
output y(t) follows the reference input r(t) with
very small steady state error.

Next, when disturbance d(t) = sin(4t) exists, the
response of the output y(t) for the disturbance is
shown in Fig. 3 . Here, the solid line shows the
response of the output y(t) and the dotted line
shows the disturbance d(t). Fig. 3 shows that
the disturbance is attenuated effectively.
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6. CONCLUSION

In this paper, we proposed the parametrization of
all stabilizing multi-period repetitive controllers
with the specified frequency characteristics.
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