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Abstract: This paper deals with multiobjective rescheduling on parallel machines
for alteration of due date. The objectives of this rescheduling problem are to
minimize both the total tardiness and a difference of schedule from that before
the alteration. Genetic algorithms with various individual descriptions are applied
to the problem in order to find the Pareto optimal solutions. In particular, two
decoding procedures are proposed to obtain schedules with a smaller difference.
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1. INTRODUCTION

In real manufacturing systems, alteration of prob-
lem condition such as change of due date and
addition of job often obliges to revise a schedule
worked out previously. Vieira et al. (2003) present
definition appropriate for most applications of
such rescheduling manufacturing systems, and re-
view various methods to solve the rescheduling
problems. The aim of most of these methods is
to optimize only an original objective function,
say the total tardiness. Consequently, the schedule
obtained by such a method may be very different
from that before the alteration. The difference of
schedule incurs time and costs in re-preparing the
processing for the case where the problem condi-
tion is altered after preparation of processing.

As studies considering the schedule difference,
Watatani and Fujii (1992) define a problem in
which the objective function is a weighted sum
of the makespan and the schedule difference.
Abumaizar and Svestka (1997) consider a problem
for a breakdown of machine, and obtain a schedule

with a small difference by rescheduling only the
operations affected by the breakdown of machine.
In our earlier paper, a rescheduling problem is
considered in a job shop (Iima, 2005).

This paper deals with a two-objective reschedul-
ing problem for parallel machines in the case
where the due dates of some jobs are altered. The
objectives of this problem are to minimize the to-
tal tardiness and the schedule difference. Genetic
algorithms (GAs) (Goldberg, 1989) with various
individual descriptions are applied to the problem
for obtaining the Pareto optimal solutions. In par-
ticular, two decoding procedures are proposed to
obtain schedules with a smaller difference. These
individual descriptions are compared through the
computational result.

2. GA FOR A CONVENTIONAL PROBLEM

In this section, a conventional scheduling problem
P∗ before the alteration is considered, and the
computational result for P∗ is shown by apply-



ing GAs with three individual descriptions. This
result is shown to compare with that for the
rescheduling problem, which will be considered in
the next section.

2.1 Problem Statement

A set of I kinds of jobs Ji (i = 1, 2, · · · , I)
is processed by using K identical machines Mk

(k = 1, 2, · · · ,K) arranged in parallel. A job
Ji is completed by processing on one of these
machines, and the processing time is given as PTi

irrespective of the machines. In addition, Ji should
be completed by the due date D∗

i . A machine
can process at most one job at a time, and no
preemption of job is allowed.

The problem P∗ is to determine both the process-
ing machine number m∗(i) for Ji and the process-
ing order of jobs for each machine in such a way
that the total tardiness F ∗1 should be minimized.
The objective function F ∗1 is formulated as

F ∗1 =
I∑

i=1

max(c∗i −D∗
i , 0) (1)

where c∗i is the completion time of Ji and can be
calculated from the decision variables.

2.2 GA for the Parallel Machine Problem

In general parallel machine problems, there are
two kinds of decision variables: the processing
order and the processing machine. Therefore, a
direct genotype in a GA is expressed by using two
strings. In this genotype, one of them represents
the processing order, and the other represents
the processing machine. However, the solution
space explored by this GA is enormous, and it
may take a long computation time to obtain a
suboptimal solution. In order to do it in a short
time, a genotype in a GA may be expressed by
using a single string representing the processing
order or the processing machine. In this GA, the
remaining decision variables are determined by
using a suitable heuristic rule in the decoding
procedure.

In this paper, three GAs (GA1, GA2 and GA3)
are designed on the basis of the above explana-
tion. In GA1 the two strings are used. The string
S1 representing the processing order is expressed
by sequencing job numbers {i}. The string S2
representing the processing machine is expressed
by sequencing the processing machine numbers
{m∗(i)} in the order of i. In the decoding proce-
dure, the processing machine is straightforwardly
determined by S2, and then the schedule on each
machine is determined by processing from the left
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Fig. 1. Computational result for the conventional
problem P∗

job in S1. As the crossover operation, the set par-
tition crossover (Shi et al., 1996) and the uniform
crossover are used for S1 and S2, respectively. As
the mutation operation, the shift mutation and
the standard one-point mutation are used for S1
and S2, respectively.

For GA2 only the string S1 is used. The schedules
of jobs are determined in the order of S1. The
machine on which a job Ji is processed is assigned
in such a way that the completion time c∗i is
minimized.

For GA3 only the string S2 is used. The processing
order for each machine is determined by the
earliest due date rule (EDD).

GA1, GA2 and GA3 use the common flow. Each
initial solution in the population is generated at
random. As the selection operation, the minimal
generation gap (Sato et al., 1997), which is of the
steady-state type, is used. The crossover and mu-
tation operations are applied at every generation.

2.3 Computational Result

Twenty instances are used for evaluating the per-
formance of GA1, GA2 and GA3. Each of these
instances belongs to one of instance sets with four
scales, and the scales of Instances 1–5, 6–10, 11–
15 and 16–20 are (I, K)=(100,5), (100,10), (200,5)
and (200,10), respectively. The processing time
PTi in these instances is given randomly from the
range of 10 to 99. Moreover, the due date Di is
appropriately given in such a way that the total
tardiness F ∗1 in a reasonable schedule is less than
one hundred.

In the GAs, there are two parameters: the popu-
lation size PS and the final generation FG. The
values of them are decided through a preliminary
calculation as follows:

PS = 300, FG = 15000 (for Instances 1–10),
PS = 300, FG = 30000 (for Instances 11–20).



Each GA is performed one hundred times with
various random seeds for an instance.

Fig. 1 shows the average of the total tardiness
obtained by each GA. It is confirmed from this
figure that GA2 is the best method. GA3 is worse
than GA2, because the optimal processing order
is not necessarily obtained by EDD in GA3. GA1
is much worse than GA2 and GA3 under the
final generation given. This is because the solution
space in GA1 is enormous, as mentioned above.

3. PARALLEL MACHINE RESCHEDULING
PROBLEM

It was confirmed from the previous section that
a suboptimal solution (schedule) S∗ is obtained
by applying GA2 to the conventional scheduling
problem P∗. Consider the situation that the pro-
duction has been prepared on the basis of S∗.
After the preparation, some due dates are altered.
The due date of job Ji after the alteration is
denoted as Di. Since S∗ may not be optimal for Di

no longer, it should be revised. In this situation,
the second objective function is defined as the
magnitude of difference between S∗ and a schedule
S revised.

The rescheduling problem P coped with in this
paper is to determine both the processing machine
number m(i) for Ji and the processing order in
such a way that both the total tardiness F1 and
the schedule difference F2 should be minimized.
The objective functions in P are formulated as
follows.

min
(

F1

F2

)
=




I∑

i=1

max(ci −Di, 0)

A + wB


 (2)

A =
I∑

i=1

|ai ∩ a∗i | (3)

(The symbol | | means the number of elements)

B =
I∑

i=1

bi (4)

bi =
{

1 (for m(i) 6= m∗(i))
0 (for m(i) = m∗(i)) (5)

(i = 1, 2, · · · , I)
ci : Completion time of Ji in S.
w : Weight.
ai: Set of jobs processed on Mm(i) before Ji in S.
a∗i : Set of jobs processed on Mm(i) after Ji in S∗.

It is noted that a∗i = {φ} for m(i) 6= m∗(i).

The variable A means the schedule difference for
the processing order, and is given on the basis of
Watatani’s definition (Watatani and Fujii, 1992).
If the machine on which a job is processed in S is

different from that in S∗, the schedule difference
of the job is zero.

The variable B means the schedule difference for
the processing machine. Moreover, the parameter
w is the weight between A and B.

4. GA FOR THE RESCHEDULING PROBLEM

4.1 Individual Description

Because the decision variables in the rescheduling
problem P are the same as those in the con-
ventional problem P∗, GA1, GA2 and GA3 are
also applicable to P. The schedule difference F2,
however, is added as the second objective function
in P. The heuristic rules used in the decoding
procedures of GA2 and GA3 are introduced to
obtain solutions with a smaller value of the total
tardiness F1, and may not be suitable for obtain-
ing solutions with a smaller value of the schedule
difference F2. Thus, new heuristic rules in these
decoding procedures are proposed in considera-
tion to not only F1 but also F2. GA2 and GA3
with these new decoding procedures are called
GA2-ND and GA3-ND, respectively.

Decoding Procedure in GA2-ND In the case
where the processing order of a left job Ji′ in the
string of GA2 is changed, the processing machines
of many jobs decoded after Ji′ tend to be changed.
Consequently, the schedule difference B for the
processing machine becomes larger. In order to
overcome this disadvantage, a job Ji in a schedule
S for P should be assigned to the same machine
Mm∗(i) as the best schedule S∗ for P∗. The total
tardiness F1, however, remains large, if all the jobs
are assigned to Mm∗(i). Thus, in GA2-ND, Ji is
assigned to Mm∗(i), if the tardiness of Ji is zero in
this case. If not, Ji is assigned to the machine such
that the completion time ci of Ji is minimized.

Decoding Procedure in GA3-ND Although the
processing order in GA3 is determined by EDD,
the jobs in S∗ are not necessarily processed in the
order of due date. This is because S∗ is obtained
by means of GA2. Therefore, the schedule differ-
ence A for the processing order becomes larger
necessarily in GA3. In order to overcome this dis-
advantage, the jobs assigned to the same machine
as S∗ in GA3-ND are sequenced in the processing
order of S∗, and the incomplete processing order
is first generated. However, if the processing order
of job of which the due date became earlier is un-
changed, the tardiness of the job may not become
smaller in the incomplete processing order. Such
a job should be processed earlier. Thus, the jobs
with Di < D∗

i or m(i) 6= m∗(i) are sequenced



in the order of due date, and then the processing
order in GA3-ND is generated by inserting these
jobs into the incomplete processing order.

4.2 Initial Population

Although the initial population in GAs is gener-
ated randomly for optimization problems in gen-
eral, S∗ can be utilized for P. Since F2 = 0 for
S = S∗, one of the Pareto optimal solutions is
already obtained for P. Therefore, S∗ is used as
one of PS initial solutions in the proposed GAs.
Then, the PS−1 initial solutions are generated by
applying a mutation operation to S∗. These initial
solutions are close to S∗ in the solution space.

4.3 Flow of GA

Most of selection operations for multiobjective
optimization problems are based on the multi-
objective GA (MOGA) (Deb, 2001). In MOGA
the rank of solution is given on the basis of the
number of solutions which dominate itself, and
solutions close to the Pareto-optimal front tend
to be selected. In a GA with such a selection
operation, solutions out of edge of incumbent non-
dominated solution set are not actively explored.
Even if this GA is applied to P, it is hard to obtain
Pareto optimal solutions with a smaller F1 and a
larger F2 because the initial solutions are around
S∗.

In this paper, a selection operation, selection by
area ranking (SAR), is used to obtain diverse
Pareto optimal solutions. In SAR, solutions are
selected by using the solution space ranked on the
basis of the non-dominated solution set X in the
solutions explored by the incumbent generation.
The solution space is ranked as follows.
Step 1 Find the area in which all the solutions

are not dominated by any solution of X,
and set the rank of the area to one.

Step 2 Number all the non-dominated solutions
of X in the order of F1, and set the score
Sm of m-th solution to m (Sm = m).

Step 3 For the area in which the solution x is
dominated by at least one non-dominated
solution of X, and set the rank of the area
to

∑

m′∈Xsub

Sm′ + 1, where Xsub is the set

of the non-dominated solution numbers
dominating x.

A solution with a small rank is close to the Pareto-
optimal front, or has a small F1. An example of
area ranking is shown in Fig. 2 for |X| = 4.

At every generation in the proposed GA, two
solutions are first picked up as the parents. While
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Fig. 2. Example of area ranking

one of them is picked up randomly from the popu-
lation, the other is picked up randomly from X in
order to explore an area around X intensively. The
former solution is removed from the population.
Next, two children are generated from the parents
by means of the crossover operation. Moreover,
two other children are generated from the parents
by means of the mutation operation. Next, the two
solutions with the smallest ranks are selected from
the two parents and the four children, and then
are added to the population. If the candidates for
the second solution selected are plural, the solu-
tion with the minimum value of F1 is selected from
these candidates. In this selection, the population
size increases, because only a single solution is
removed from the population. In order to pre-
vent this, another solution selected randomly is
removed from the population before the two best
solutions are added to the population.

5. COMPUTATIONAL RESULT FOR THE
RESCHEDULING PROBLEM

The effectiveness of five GAs is examined through
the computational result.

5.1 Experimental Setup

In order to generate the instances of rescheduling
problem P, the due date is altered for a few
jobs on the basis of the best schedule S∗ for the
conventional problem P∗. These jobs are selected
randomly from the jobs such that the tardiness
in S∗ is zero and the completion time c∗i in S∗

is larger than half of maximum completion time
(makespan). The number of the jobs is two and
four for I=100 and 200, respectively. The due date
Di of each of the jobs {Ji} is altered to 0.9c∗i .
Hence, they become tardy for S = S∗.

Two kinds of values, one and ten, are used for
the weight w between the schedule difference of
processing order and that of processing machine.
Instances 21–40 and 41–60 are numbered for w=1
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Fig. 4. Comparison between GA3-ND and GA3

and 10 by generating from Instances 1-20, respec-
tively.

The parameters in the GAs for P are the same as
those for P∗. Each GA is performed one hundred
times with various random seeds for an instance.

The GAs are evaluated by the coverage metric
(Deb, 2001) which means relation of domination
between the solution sets obtained by two meth-
ods. The coverage metric C(M1,M2) of Method 1
(M1) to Method 2 (M2) is defined by

C(M1,M2) =
|{x2 ∈ X2;∃x1 ∈ X1 : x1 º x2}|

|X2| (6)

where X1 and X2 are the solution sets ob-
tained by M1 and M2, respectively. Moreover,
x1 º x2 means that Solution x1 dominates Solu-
tion x2 or has the same objective values as x2. If
C(M1,M2) > C(M2,M1), M1 is better than M2.

5.2 Result and Discussion

First, the effectiveness of the proposed decoding
procedures is examined. Fig. 3 shows the average
coverage metric between GA2-ND and GA2. Be-
cause C(GA2-ND,GA2) > C(GA2,GA2-ND) in
all the instances, the proposed decoding procedure
is effective. In particular, the difference between
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these GAs is large for Instances 31–40 and 51–60
in which the number of jobs is large. As mentioned
in Subsection 4.1, in the case where the processing
order of a left job in the string of GA2 is changed,
the processing machines of many jobs tend to be
changed. Therefore, the schedule difference B for
the processing machine becomes much larger in
these instances.

Next, Fig. 4 shows the average coverage metric
between GA3-ND and GA3. Because GA3-ND
is better in almost all instances, the proposed
decoding procedure is effective. Furthermore,
C(GA2,GA2-ND)=0 in all the instances.
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Next, GA1, GA2-ND and GA3-ND are compared.
Figs. 5, 6 and 7 show the average coverage met-
ric between two of them, respectively. It is con-
firmed from these figures that GA2-ND is the
best method. From the viewpoint of the coverage
metric between GA3-ND and GA1, GA3-ND is
better than GA1 for Instances 21–40 with w=1,
and GA1 is better for Instances 41–60 with w=10.
While GA1 is much worse than GA3 for the con-
ventional problem P∗, GA1 is as good as GA3 for
the rescheduling problem P.

Next, solution sets obtained by GA1, GA2-ND
and GA3-ND are shown in Fig. 8 for Instances
20 and 40 in which only the weight w is different.
These are results in a single trial. It is found from
the figure that the solution set obtained by GA2-
ND is spread and is distributed uniformly. A deci-
sion maker can confirm the total tardiness and the
schedule difference of each schedule by the figure,
and determine a desirable schedule according to
the situation at that time. The value in brackets
in the figure means the schedule difference B for
the processing machine. Solutions with a smaller
B are obtained for the instance with the larger w.

Finally, the solution sets obtained by the three
GAs are compared in Fig. 8. The solution set by
GA1 is the same as that by GA2-ND in the range
of larger values of the total tardiness F1. On the
other hand, no solution is obtained by GA1 in the

range of smaller F1. As for GA3-ND, the solutions
obtained are not good for w=10.

6. CONCLUSION

This paper has dealt with two-objective reschedul-
ing on parallel machines for alteration of due date.
The aim of this problem is to minimize the sched-
ule difference as well as the total tardiness. The
GAs with five individual descriptions have been
applied to find the Pareto optimal solutions in the
problem. In particular, the decoding procedures
have been proposed to obtain solutions with a
small schedule difference. It is concluded from the
computational result that solutions close to the
Pareto-optimal front are obtained by the GA in
which the decoding procedure is designed so as to
process a job on the same machine as that for the
schedule before the alteration.
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