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Abstract: In this paper, we investigate the parameterization of all robust stabilizing
repetitive controllers for single-input/single-output continuous time non-minimum
phase systems. The repetitive control system is a type of servo mechanism
designed for a periodic reference input. When repetitive control design methods
are applied to real systems, the influence of uncertainties in the plant must be
considered. In some cases, the uncertainties in the plant make the repetitive control
system unstable, even though the controller was designed to stabilize the nominal
plant. The stability problem with uncertainty is known as the robust stability
problem. Several papers to design robust stabilizing repetitive control systems have
been published. However the parametrization of all robust stabilizing repetitive
controllers has not been considered. In this paper, we propose the parametrization
of all robust stabilizing repetitive controllers for non-minimum phase systems.
Finally, a numerical example is illustrated to show the effectiveness of the proposed
parametrization. Copyright c©2005 IFAC
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1. INTRODUCTION

In this paper, we examine the parametrization of
all robust stabilizing repetitive controllers. The
repetitive control system is a type of servo mech-
anism designed for a periodic reference input
(Inoue et al., 1980; Hara et al., 1988; Omata et
al., 1987).

When repetitive control design methods are ap-
plied to real systems, the influence of uncertainties
in the plant must be considered. In some cases,
the uncertainties in the plant make the repet-
itive control system unstable, even though the
controller was designed to stabilize the nominal
plant. The stability problem with uncertainty is
known as the robust stability problem (Doyle et
al., 1989). The robust stability problem of repet-
itive control systems was considered by (Hara
et al., 1994). The robust stability condition for
repetitive control systems was reduced to the µ

synthesis problem (Hara et al., 1994), but the µ
synthesis problem cannot be solved analytically.
That is, in order to solve the µ synthesis problem,
we must solve an H∞ problem iteratively using
the D − K iteration method. Furthermore, the
convergence of iterative methods to solve the µ
synthesis problem is not guaranteed. (Yamada
et al., 2003b) tackle this problem and propose a
design method of robust repetitive control sys-
tems without solving the µ synthesis problem. The
method by (Yamada et al., 2003b) is effective for
the minimum phase systems, however the method
by (Yamada et al., 2003b) is not so effective for the
non-minimum phase systems, since the frequency
range in which the output follows the periodic
reference input is restricted. Therefore, (Yamada
et al., 2003a) gave a design method for robust
repetitive control systems for non-minimum phase
system such that the frequency range in which
the output follows the periodic reference input



is not restricted. However, the parametrization of
all robust stabilizing repetitive controllers has not
been considered.

In this paper, we propose the parametrization
of all robust stabilizing repetitive controllers for
non-minimum phase systems. The basic idea of
the method is as follows. If the repetitive control
system is robustly stable for the plant, then the
repetitive controller must satisfy the robust sta-
bility condition. This implies that if the repetitive
control system is robustly stable, then the repet-
itive controller is included in the parametrization
of all robust stabilizing controllers for the plant.
The parametrization of all robust stabilizing con-
trollers for the plant is obtained using H∞ control
theory based on the Riccati equation (Doyle et
al., 1989) and the Linear Matrix Inequality (LMI)
(Iwasaki and Skelton, 1994; Gahinet and Apkar-
ian, 1994). Robust stabilizing controllers for the
plant include a free parameter, which is designed
to achieve desirable control characteristics. If the
free parameter is chosen to give the control system
robust servo characteristics for periodic reference
input, then the controller operates as a robust
repetitive controller. Conversely a repetitive con-
troller stabilizing the plant robustly, then the free-
parameter is written by an appropriate form. Us-
ing this idea, we obtain the parametrization of all
robust stabilizing repetitive controllers. Finally,
a numerical example is shown to illustrate the
effectiveness of the proposed parametrization.

Notations

R the set of real numbers.
R+ R ∪ {∞}.
R(s) the set of real rational function

with s.
RH∞ the set of stable proper real ra-

tional functions.
H∞ the set of stable causal functions.
D⊥ orthogonal complement of D,

i.e.,
[
D D⊥ ]

or
[

D

D⊥

]
is uni-

tary.
AT transpose of A.
A† pseudo inverse of A.
ρ({·}) spectral radius of {·}.
σ̄({·}) largest singular value of {·}.
‖{·}‖∞ H∞ norm of {·}[

A B
C D

]
represents the state space de-
scription C(sI − A)−1B + D

2. PROBLEM FORMULATION

Consider the unity feedback system in

{
y = G(s)u
u = C(s)(r − y) , (1)

where G(s) ∈ R(s) is the plant, C(s) is the
controller, y ∈ R is the output and r ∈ R is the
reference input with period T satisfying

r(t + T ) = r(t) (∀t ≥ 0). (2)

The nominal plant of G(s) is denoted by Gm(s) ∈
R(s). Both G(s) and Gm(s) are assumed to have
no zero or pole on the imaginary axis. In addition,
it is assumed that the number of poles of G(s) in
the closed right half plane is equal to the number
of poles of Gm(s). The relation between the plant
G(s) and the nominal plant Gm(s) is written as

G(s) = Gm(s)(1 + ∆(s)). (3)

The set of ∆(s) is all rational functions satisfying

|∆(jω)| < |WT (jω)| (∀ω ∈ R+), (4)

where WT (s) is an asymptotically stable rational
function.

The robust stability condition for the plant G(s)
with uncertainty ∆(s) satisfying (4) is given by

‖T (s)WT (s)‖∞ < 1, (5)

where T (s) is the complementary sensitivity func-
tion given by

T (s) =
Gm(s)C(s)

1 + Gm(s)C(s)
. (6)

According to (Inoue et al., 1980; Hara et al., 1988;
Omata et al., 1987), in order the output y to follow
the reference input r in (1) with small steady state
error, the controller C(s) must have the following
structure

C(s) = Ĉ(s) + C̄(s)
q(s)e−sT

1 − q(s)e−sT
, (7)

where q(s) ∈ R(s) is a low-pass filter satisfying
q(0) = 1, Ĉ(s) ∈ R(s) and C̄(s) ∈ R(s). In
the following, q(s)e−sT /(1 − q(s)e−sT ) define the
internal model for the periodic signal with period
T .

The problem considered in this paper is to give the
parametrization of all robust stabilizing repetitive
controllers C(s) written by the form in (7) such
that the repetitive control system in (1) is robustly
stable and the output y follows the periodic ref-
erence input r with small steady state error even
in the presence of uncertainty ∆(s). That is, we
find the parametrization of all robust stabilizing
repetitive controllers satisfying (5).



3. THE PARAMETRIZATION OF ALL
ROBUST STABILIZING REPETITIVE

CONTROLLERS

In this section, we give the parametrization of all
robust stabilizing repetitive controllers.

In order to obtain the parametrization of all ro-
bust stabilizing repetitive controllers, we must see
that the robust stabilizing repetitive controllers
hold (5). The problem of obtaining the controller
C(s), which is not necessarily a repetitive con-
troller, satisfying (5) is equivalent to the following
H∞ problem. In order to obtain the controller
C(s) satisfying (5), we consider the control system
shown in Fig. 1. P (s) is selected such that the

w z

u y
P(s)

C(s)

Fig. 1. Block diagram of H∞ control problem

transfer function from w to z in Fig. 1 is equal to
T (s)WT (s). The state space description of P (s)
is, in general,




ẋ(t) = Ax(t) +B1w(t) +B2u(t)
z(t) = C1x(t) +D12u(t)
y(t) = C2x(t) +D21w(t)

, (8)

where A ∈ Rn×n, B1 ∈ Rn, B2 ∈ Rn, C1 ∈ R1×n,
C2 ∈ R1×n, D12 ∈ R, D21 ∈ R. P (s) is called
the generalized plant. P (s) is assumed to satisfy
the standard assumption in (Doyle et al., 1989).
Under these assumptions, according to (Doyle et
al., 1989), following lemma holds true.

Lemma 1. If controllers satisfying (5) exist, both

X
(
A − B2D

†
12C1

)
+

(
A − B2D

†
12C1

)T

+ X
(
B1B

T
1 − B2

(
DT

12D12

)−1
BT

2

)
X

+
(
D⊥

12C
T
1

)T
D⊥

12C
T
1 = 0 (9)

and

Y
(
A − B1D

†
21C2

)T

+
(
A − B1D

†
21C2

)
Y

+ Y
(
CT

1 C1 − CT
2

(
D21D

T
21

)−1
C2

)
Y

+ B1D
⊥
21

(
B1D

⊥
21

)T
= 0 (10)

have solutions X ≥ 0 and Y ≥ 0 such that

ρ (XY ) < 1 (11)

and both

A − B2D
†
12C1 +

(
B1B

T
1 − B2

(
DT

12D12

)−1
BT

2

)
X

and

A − B1D
†
21C2 + Y

(
CT

1 C1 − C2

(
D21D

T
21

)−1
C2

)

have no eigenvalue in the closed right half plane.
Using X and Y , the parameterization of all con-
trollers satisfying (5) is given by

C(s)

= C11(s) + C12(s)Q(s)(I − C22(s)Q(s))−1C21(s),

(12)

where

[
C11(s) C12(s)
C21(s) C22(s)

]
=


 Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22


 (13)

Ac = A + B1B
T
1 X − B2

(
D†

12C1 + E−1
12 BT

2 X
)

− (I − XY )−1
(
B1D

†
21 + Y CT

2 E−1
21

)
(
C2 + D21B

T
1 X

)

Bc1 = (I − XY )−1
(
B1D

†
21 + Y CT

2 E−1
21

)

Bc2 = (I − XY )−1 (
B2 + Y CT

1 D12

)
E

−1/2
12

Cc1 =−D†
12C1 − E−1

12 BT
2 X

Cc2 =−E
−1/2
21

(
C2 + D21B

T
1 X

)

Dc11 = 0

Dc12 = E
−1/2
12

Dc21 = E
−1/2
21

Dc22 = 0

E12 = DT
12D12

E21 = D21D
T
21

and the free parameter Q(s) ∈ H∞ is any function
satisfying ‖Q(s)‖∞ < 1 (Doyle et al., 1989).

Using Lemma 1, the parametrization of all robust
stabilizing repetitive controllers so that the sys-
tem in (1) is internally stable is given by following
theorem.



Theorem 1. If repetitive controllers satisfying (5)
exist, both (9) and (10) have solutions X ≥ 0 and
Y ≥ 0 satisfying (11) and both

A − B2D
†
12C1 +

(
B1B

T
1 − B2

(
DT

12D12

)−1
BT

2

)
X

and

A − B1D
†
21C2 + Y

(
CT

1 C1 − C2

(
D21D

T
21

)−1
C2

)

have no eigenvalue in the closed right half plane.
Using X and Y , the parametrization of all robust
stabilizing repetitive controllers satisfying (5) is
given by

C(s)

= C11(s) + C12(s)Q(s) (I − C22(s)Q(s))−1
C21(s),

(14)

where Cij(s)(i = 1, 2; j = 1, 2) are given by (13)
and the free parameter Q(s) ∈ H∞ is any function
satisfying ‖Q(s)‖∞ < 1 and written by

Q(s) =
Qn1(s) + Qn2(s)e−sT

Qd1(s) + Qd2(s)e−sT
. (15)

Here Qn1(s) ∈ RH∞, Qn2(s) ∈ RH∞, Qd1(s) �=
0 ∈ RH∞ and Qd2(s) ∈ RH∞ are any functions
satisfying

(Qd1(0) + Qd2(0))− (Qn1(0) + Qn2(0))C22(0) = 0

(16)

and

C12(s)C21(s) (Qn1(s)Qd2(s) − Qn2(s)Qd1(s)) �= 0.

(17)

(Proof) First, necessity is shown. That is, if the
robust repetitive controller written by (7) stabi-
lizes the control system in (1), then C(s) and
Q(s) are written by (14) and (15), respectively.
From Lemma 1, the parametrization of all robust
stabilizing controllers C(s) for G(s) is written by
(14), where ‖Q(s)‖∞ < 1. In order to prove the
necessity, we will show that if C(s) written by (7)
stabilizes the control system in (1), then the free
parameter ‖Q(s)‖∞ < 1 in (14) is written by (15).
Substituting C(s) in (7) into (14), we have

Q(s) =
Qn1(s) + Qn2(s)e−sT

Qd1(s) + Qd2(s)e−sT
(18)

where

Qn1 = C̄d(s)C12d(s)C21d(s)C22d(s)qd(s)

·
(
Ĉd(s)C11n(s) − Ĉn(s)C11d(s)

)
, (19)

Qn2(s)

= C12d(s)C21d(s)C22d(s)qn(s)(C̄d(s)Ĉn(s)C11d(s)

−C̄d(s)Ĉd(s)C11n(s) − C̄n(s)Ĉd(s)C11d(s)), (20)

Qd1(s)

= C̄d(s)qd(s)(C11n(s)C22n(s)C12d(s)C21d(s)Ĉd(s)

−C11d(s)C22n(s)C12d(s)C21d(s)Ĉn(s)

−C11d(s)C22d(s)C12n(s)C21n(s)Ĉd(s)) (21)

and

Qd2(s)

= C̄d(s)Ĉd(s)qn(s)(C11d(s)C22d(s)C12n(s)C21n(s)

−C11n(s)C22n(s)C12d(s)C21d(s))

+C11d(s)C22n(s)C12d(s)C21d(s)qn(s)

·(C̄d(s)Ĉn(s) − Ĉd(s)C̄n(s)) (22)

Here, Ĉn(s) ∈ RH∞ and Ĉd(s) ∈ RH∞ are
coprime factors of Ĉ(s) on RH∞ satisfying

Ĉ(s) = Ĉn(s)Ĉ−1
d (s). (23)

C̄n(s) ∈ RH∞ and C̄d(s) ∈ RH∞ are coprime
factors of C̄(s) on RH∞ satisfying

C̄(s) = C̄n(s)C̄−1
d (s). (24)

C11n(s) ∈ RH∞ and C11d(s) ∈ RH∞ are coprime
factors of C11(s) on RH∞ satisfying

C11(s) = C11n(s)C−1
11d(s). (25)

C12n(s) ∈ RH∞ and C12d(s) ∈ RH∞ are coprime
factors of C12(s) on RH∞ satisfying

C12(s) = C12n(s)C−1
12d(s). (26)

C21n(s) ∈ RH∞ and C21d(s) ∈ RH∞ are coprime
factors of C21(s) on RH∞ satisfying

C21(s) = C21n(s)C−1
21d(s). (27)

C22n(s) ∈ RH∞ and C22d(s) ∈ RH∞ are coprime
factors of C22(s) on RH∞ satisfying

C22(s) = C22n(s)C−1
22d(s). (28)

From (19)∼(22), all of Qn1(s), Qn2(s), Qd1(s) and
Qd2(s) are included in RH∞. Thus, we have shown
that if C(s) written by (7) stabilize the control
system in (1), Q(s) in (14) is written by (15). Since
q(0) = 1, (16) holds true.



Next, sufficiency is shown. That is, if C(s) and
Q(s) ∈ H∞ is settled by (14) and (15), respec-
tively, then the controller C(s) is written by the
form in (7) and q(0) = 1 holds true. Substituting
(15) into (14), we have

C(s) = Ĉ(s) + C̄(s)
q(s)e−sT

1 − q(s)e−sT
, (29)

From simple manipulation, Ĉ(s), C̄(s) and q(s)
are denoted by

Ĉ(s) =
C11(s)Qd1(s)+

Qd1(s) − C22(s)Qn1(s)
(C12(s)C21(s) − C11(s)C22(s))Qn1(s)

,

(30)

C̄(s)

=
C12(s)C21(s)

(Qd1(s) − C22(s)Qn1(s))

· (Qn1(s)Qd2(s) − Qn2(s)Qd1(s))
(Qd2(s) − C22(s)Qn2(s))

(31)

and

q(s) =−Qd2(s) − C22(s)Qn2(s)
Qd1(s) − C22(s)Qn1(s)

. (32)

We find that if C(s) and Q(s) is settled by (14)
and (15), respectively, then the controller C(s) is
written by the form in (7). From (17), C2(s) �= 0
holds true. Substituting (16) into (32), we have
q(0) = 1.

We have thus proved Theorem 1.

Remarks 1. Even if any of the standard assump-
tions in (Doyle et al., 1989) do not hold, if (A, B2)
is stabilizable and (A, C2) is detectable, using
the result in (Iwasaki and Skelton, 1994), we
can obtain the parameterization of all stabilizing
controllers C(s) satisfying (5). In this case, the
paremetrization of all robust repetitive controller
is obtained using the same manner as proof of
Theorem 1.

4. NUMERICAL EXAMPLE

In this section, a numerical example is shown to il-
lustrate the effectiveness of the proposed method.

Let us consider to design a robust stabilizing
repetitive controllers for the class of the plant G(s)
in (3) written by

Gm(s) =
2

s3 + 2s2 − 13s + 10
(33)

and

WT (s) =
(s + 6)(s + 900)(s + 5000)

1.35 × 109 . (34)

The period T in (2) is T = 4[sec]. Solving the
robust stability problem using Riccati equation
based H∞ control as Theorem 1, the parametriza-
tion of all robust stabilizing controllers C(s) is ob-
tained. In addition, we find that C22(s) is of mini-
mum phase. Since C22(s) is of minimum phase, we
settle Qn1(s), Qn2(s), Qd1(s) and Qd2(s) in (15)
as

Qn1(s) = 0, (35)

Qn2(s) =
q̄(s)

C22(s)
, (36)

Qd1(s) = 1 (37)

and

Qd2 = 0, (38)

where q̄(s) is written by

q̄(s) =
1(

1 +
s

455

) (
1 +

s

550

)(
1 +

s

500

) . (39)

That is, Q(s) in (15) is written by

Q(s) = Qn2(s)e−sT . (40)

The gain plot of free parameter Q(s), q̄(s) and
1/C22(s) are shown in Fig. 2. Here the solid line
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Fig. 2. Gain plot of Q(s), q̄(s) and 1/C22(s)

shows the gain plot of Q(s), the dashed line shows
that of q(s) and the dash-dot line shows that of
1/C22(s). From (40) and Qn2(s) ∈ RH∞ in (36),
Fig. 2 shows that Q(s) satisfies ‖Q(s)‖∞ < 1.

Let ∆(s) be denoted by



∆(s) =
s + 6
1000

. (41)

The gain plot of 1/∆(s) and 1/WT (s) are shown
in Fig. 3. Here, the solid line shows the gain plot

10
-3

10
 -2

10
 -1

10
0

10
1

10
2

10
3

10
4

 -60

 -40

 -20

0

20

40

60

Angular Frequency [rad/sec]

G
ai

n 
[d

B
]

É(s)
1

WT(s)
1

Fig. 3. Gain plot of 1/WT (s) and 1/∆(s)

of 1/WT (s) and the dashed line shows that of
1/∆(s). Fig. 3 shows that the uncertainty ∆(s)
satisfies (3).

Using the obtained robust stabilizing repetitive
controller C(s) in (14), the response for the refer-
ence input r = sin(π/2 t) is shown in Fig. 4. Here,

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

t [sec]

r,
 y

Fig. 4. Response for the reference input r =
sin(π/2 t)

the solid line shows the response of the output y
and the dotted line shows that of the reference
input r. In this figure, the output y follows the
reference input r with small steady state error.

In this way, a robust stabilizing repetitive con-
troller is easily designed using Theorem 1.

5. CONCLUSIONS

In this paper, we proposed the parametrization
of all robust stabilizing repetitive controllers. A
numerical example is shown to illustrate the ef-
fectiveness of the obtained parametrization.
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