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Abstract: This paper proposes the application of Ant Colony Optimization (ACO) for 
active/reactive operational planning of power systems. The ACO is a newly developed 
method belonging to the class of evolutionary computation methods inspired from real 
ants life. Specifically, ACO algorithm aims to determine the optimal settings of control 
variables, such as generator outputs, generator voltages, transformer taps and shunt 
VAR compensation devices, considered as nodes of an Ant-System (AS) graph. 
Results are compared to those given by Simulated Annealing for the IEEE 30-bus test 
system, exhibiting superior performance. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Modern power systems have many operations such as 
the dispatch of active power and others known as 
ancillary services. Active/reactive operational 
planning belongs to this category of services. It 
allocates Volt control and reactive support in 
accordance with open market mechanisms 
(Papadogiannis, et al., 2003). Many research works 
(Bhattacharya and Zhong, 2001; Dandachi, et al., 
1996; Gross, et al., 2002; Lee, et al., 1984, 1985, 
1988; Papadogiannis, et al., 2003; Silva, et al., 2001) 
reveal the coupling between active and reactive 
power support, some others (Dona and Peredes, 
2001; El-Keib and Ma, 1997) try to evaluate reactive 
power short-term marginal prices and Hao and 
Papalexopoulos (1997) propose the development of 
local reactive power markets. Zammit et al. (2000) 
design ancillary service markets considering firstly 
security and secondly economic optimization in 

combination with spot market for electricity. 
Recently, the discrete nature of the problem leading 
to the use of meta-heuristic techniques such as 
Simulated Annealing (SA) and Genetic Algorithms 
(GA) (Lee, et al., 1995; Chen and Liu, 1995; Chen, 
1996; Hsiao, et al., 1994; Huang, et al., 1998; 
Papadogiannis, et al., 2003; Wong and Suzannah, 
1996; Yang, et al., 1996).  
 
In this paper, the active/reactive operational planning 
is solved by means of the heuristic Ant Colony 
Optimization (ACO) method. Dorigo (1992) has 
proposed the first ACO in his Ph.D. thesis. The ACO 
method belongs to biologically inspired heuristics 
(meta-heuristics) methods (Dorigo, et al., 1996; 
Dorigo and Cambardella, 1997; Dorigo and Di Caro, 
1999). Real ants are capable of finding the shortest 
path from food source to their nest, without using 
visual cues, but by exploiting pheromone 
information. While walking, real ants deposit 



pheromone trails on the ground and follow 
pheromone previously deposited by other ants. This 
behavior has inspired the ACO algorithm in which a 
set of artificial ants cooperate in solving a problem 
by exchanging information via pheromone deposited 
on a graph. Specifically, in this paper, ACO 
algorithm aims to determine the optimal settings of 
voltage control variables, such as generator outputs, 
voltages, transformer taps and shunt VAR 
compensation devices (Chiou, et al., 2004), 
considered as nodes of Ant-System (AS) graph 
(Dorigo, 1992; Dorigo, et al., 1996; Dorigo and 
Cambardella, 1997; Dorigo and Di Caro, 1999). 
Results are compared to those given by meta-
heuristic technique of Simulated Annealing 
(Papadogiannis, et al., 2003) for the network of IEEE 
30-bus test system, exhibiting superior performance.  
 
 

2. MATHEMATICAL FORMULATION 
 
The ancillary services studied in this paper include 
firstly economic resource allocation considering 
typical bid structure and secondly security 
management. Specifically, the minimization of the 
offered bid cost, the constraints of basic components 
and the steady state transmission line loadings are 
examined. Therefore, the problem of active/reactive 
operational planning is formulated as an optimization 
problem considering as objective function, the cost 
minimization expressed by: 
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where   
t
TC  is the total cost  
t
iC  is the active power cost of unit-i at time-t  
t

giP  is active power generation of unit-i at time-t 
 Ng is the total number of units 
 
under the following mild constraints: 
 
a) Generation constraints: Generator voltages, 
active and reactive powers restricted by lower and 
upper limits. 
b) Transformer constraints: Transformer taps 
bounded by lower and upper limits. 
c) Shunt VAR constraints: Shunt VAR 
compensation restricted by its capacity. 
d) Security constraints: Steady State transmission 
line loadings. 
 
The above inequalities are incorporated in the 
objective function (1) as quadratic highly penalty 
terms (Dorigo, et al., 1996). 
 
 
 
 
 

 
3. ACO FOR ACTIVE/REACTIVE OPERATION 

PLANNING 
 

The settings of control variables (generator voltages, 
active powers tap-settings, VAr compensation 
blocks, etc.) are combined in order to achieve the 
power system constraints. In our approach, the graph 
that describes the settings of control variables of the 
active/reactive operational planning is mapped on the 
AS-graph, which is the space that the artificial ants 
will walk. Fig. 1 shows the AS-graph (searching 
space) for the active/reactive operational planning. 
All possible candidate discrete settings for a control 
variable are represented by the states r of the AS-
graph (r = 1, …, m). The control variables are 
represented by the stages i (i = 1, ..., n), where n is 
the number of the control variables. Each ant will 
start its tour at the home colony and stop at the 
destination.  
 
The ACO algorithm for active/reactive operation 
planning proceeds as follows (Table 1): 
An operating point at time-t comprising a load and 
generation pattern (operating point of the whole 
planning period of the system) is randomly created. 
For this operating point, first of all AS graph is 
created and all paths receive an amount of 
pheromone that corresponds to an estimation of the 
best solution so that ants test all paths in the initial 
iterations. Therefore, ACO-algorithm achieves the 
best exploration of AS-graph in the earlier iterations 
of convergence and better exploitation at the latest. If 
the ant k is at point r, has the next point been visited? 
The ant k maintains a tabu list k

rN  in memory that 
defines the set of points still to be visited when it is at 
point r. Then, ant k chooses the next states to go to in 
accordance with the transition probability calculated 
by (2):  
 
 
 

 
 
Fig.1. Search space for the active/reactive operation 
          planning. 

 



 
Table 1: ACO algorithm for active/reactive 

operational planning 
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where matrix γ(r,s) represents the amount of the 
pheromone trail, pheromone intensity, between 
points r and s.  
 
When the ant k moves from one stage to the next, the 
state of each stage will be recorded in a location list 

kJ . After the tour of ant k is completed, its location 
list is used to compute its current solution.  
Then the pheromone trails composed by nodes of 
location list kJ  are updated in accordance with (3) 
(local update):  
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For the purpose of this research, the pheromone 
update ( , )γ∆ k r s  is chosen as: 
 

1( , )γ∆ =
⋅

k r s
Q f

              (4) 

 
where f is the objective function, and Q is a large 
positive constant. 
 
Application of the ACO algorithm to the 
active/reactive operational planning is linked to the 
choice of an objective function f, which incorporates 
all linear/nonlinear constraints related with voltages, 
flows, real outputs of generators, reactive sources and 
transformer taps. For comparison purpose the 
evaluation function f is chosen this given in 
(Papadogiannis, et al., 2003): 
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where N is the total number of buses, Nb is the set of 
network branches, min max,i iV V are the limits of voltage 

at bus-i, and max
jI is the limit for the transmission 

line-j. 
 
The penalty factors p(V) and p(I) enforces the voltage 
and thermal limits: 
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In order to exploit the iteration in finding the best 
solution, the next two steps are considered: 
 
a) When all ants complete their tours, the pheromone 
trails (r,s) of the best ant tour (ant with minimum 
objective function (5)) is updated (global update) as: 
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Rr s r s r s J
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      (8) 

 
where R is a large positive constant.   
 
Both Q in (4) and R are arbitrarily large numbers.  
Empirical tests have shown that the ACO-algorithm 
converges faster when Q is almost equal to R. 
 
b) To avoid search stagnation (the situation where all 
ants follow the same path, that is, they construct the 
same solution (Dorigo and Cambardella, 1997)), the 
allower range of the pheromone trail strengths is 
limited to:  
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1. Create the AS-graph (search space) that represents 
the discrete settings (states) of the control variables 
(stages). 
2. Insert the pheromone matrix γ(m,n) according to 
nodes of AS-graph, where n is the number of stages 
and m the number of states. 
3. Initialize the pheromone matrix γ(m,n) = γ0(m,n) = 
τmax (in (10), in this case fgbest is an initial estimation of 
the best solution). 
4. Do for an operating point. 
4.1 Repeat until the system convergence or iteration is 
less than a given maximum number. 
4.1.1 Place randomly M ants on the states of the 1st 
stage (i = 1). 
4.1.2 For k=1 to M 
4.1.2.1 For i = 2 to n 
4.1.2.1.1 When the ant-k has selected the r-state of the 
(i-1)-stage, it currently chooses the s-state of the (i)-
stage in which will move according to transition rule 
(2) 
4.1.2.1.2 Move the ant-k to s-state of i–stage.  
4.1.2.1.3 Record s to Jk, and set r =s 
4.1.3 Run power flow  
4.1.4 Calculate the objective function (5) for each ant 
4.1.5 Update the pheromone of (r,s)-trails for each ant, 
using the local pheromone update formulae (3), (4) 
4.1.6 Update the pheromone of (r,s)-trails belonging tο 
best ant tour (fbest), using the pheromone update 
formula (8) 
4.1.7 In order to avoid the ants stagnations, enforce the 
limits (9)-(11) 



 
For our study the limits are chosen as:  
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where fgbest is the global best solution (best over the 
whole past iterations), and 
  

max
min 2

τ
τ =

M
                      (11) 

 
where M is the number of ants. The ACO procedure 
can be repeated for a large number of operating states 
covering the whole planning period. 

 
 

4. CASE STUDY 
 
The proposed algorithm is applied on the IEEE 30-
bus test system. The topology and the complete data 
of this network can be found in: 
http://www.ee.washington.edu/research/pstca/pf30/ 
pg_tca30bus.htm.  
 
The network consists of 4 generators, 41 lines, 4 
transformers and 2 capacitor banks. In the 
transformer tests, 7 tap positions in each transformer 
were considered. Each position corresponds to 0.02 
increments within the interval [0.94, 1.06]. The 
available reactive powers of capacitor banks are [0, 
7.5, 15, 22.5, 30] MVAr and they are connected to 
buses 10 and 24. Generator voltages are discretized 
in 150 steps (step: 0.0006 pu) within the range of 
[0.96, 1.05]. Loads were set at the values referred in 
http://www.ee.washington.edu/research/pstca/pf30/ 
pg_tca30bus.htm, multiplied by a factor of 0.6 
(nominal load). The increment/decrement accuracy 
for the generator outputs was set to 1MW/0.01 pu. 
The bid curves of four generators and the minimum 
and maximum submitted capacities are given by 
(Papadogiannis, et al., 2003): 
 

1

1

1 1

1

1

10€ / MWh 50MW P 80MW
20€ / MWh 80MW P 110MW

bid(P ) 30€ / MWh 110MW P 140MW   (12)
40€ / MWh 140MW P 170MW
50€ / MWh 170MW P 200MW

≤ <⎧ ⎫
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2

2

2 2

2

2

10€ / MWh 20MW P 36MW
20€ / MWh 36MW P 52MW

bid(P ) 30€ / MWh 52MW P 68MW     (13)
40€ / MWh 68MW P 84MW
50€ / MWh 84MW P 100MW

≤ <⎧ ⎫
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3

10€ / MWh 10MW P 18MW
20€ / MWh 18MW P 26MW

bid(P ) 30€ / MWh 26MW P 34MW      (14)
40€ / MWh 34MW P 42MW
50€ / MWh 42MW P 50MW

≤ <⎧ ⎫
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4

4

4 4

4

4

10€ / MWh 3MW P 5.4MW
20€ / MWh 5.4MW P 7.8MW

bid(P ) 30€ / MWh 7.8MW P 10.2MW   (15)
40€ / MWh 10.2MW P 12.6MW
50€ / MWh 12.6MW P 15MW

≤ <⎧ ⎫
⎪ ⎪≤ <⎪ ⎪⎪ ⎪= ≤ <⎨ ⎬
⎪ ⎪≤ <⎪ ⎪
⎪ ⎪≤ ≤⎩ ⎭

 
In our study, the following ACO parameters are 
chosen: M = 300, n = 14, m = 150, Q = R = 5,000,000 
and the initial best solution is estimated at 0.1. The 
parameter α in (3) from our experience shows that 
any value in the range [0.88, 0.999] works well. In 
this paper it is chosen as α = 0.99. In this study, the 
search will terminate if one of the following criteria 
is satisfied: a) the number of iterations since the last 
change of the best solution is greater than 1000 
iterations, or b) the number of iterations reaches to 
3000 iterations.  
 
The ACO algorithm converges in 2010 iterations 
(Fig. 2) and the final value of function (5) was 3050 
€. The final value given by Simulated Annealing 
(Papadogiannis, et al., 2003) method is 3141 €. An 
improvement of 91€ is obtained compared to the 
evaluation given by SA (Papadogiannis, et al., 2003). 
The final settings of control variables for ACO and 
SA are given in Table 2. It is shown that the 
generator outputs given by ACO algorithm are 
slightly different from those given by SA 
(Papadogiannis, et al., 2003). 
 
 
 
 

 
 
 
Fig. 2. Performance of ACO algorithm in the 
           nominal load. 
 
 
 
 
 



 
Table 2 ACO’s  settings of control variables for IEEE 

30-bus test system 
 

 
 
 
 

 
 
Fig. 3. Bus voltages. 
 
 
 

 
 
Fig. 4. Apparent flows (pu). 

 
 

The bus voltages and apparent flows in pu are given 
in Figs. 3 and 4, respectively. The bus voltages are 
within the acceptable voltage range of [0.96, 1.05] as 
shown in Fig 3. According to Fig. 4 all branch 
apparent flows are much lower than the acceptable 
ranges of 202MW/2.02 pu (for 132 KV lines between 
buses: 1-2, 1-3, 2-4, 2-5, 2-6, 3-4, 4-6, 6-28, 5-7, 6-8, 
6-7, 8-28) and 30MW/0.3 pu (for 33 KV lines). 

 
 

5. CONCLUSIONS 
 
In this paper we present a coupled approach of 
active/reactive operational planning as an 
optimization problem in market environment. An 
ACO algorithm was implemented in order to solve 

this problem. Specifically, ACO algorithm 
determined the optimal settings of control variables, 
such as generator real outputs and voltages, 
transformer taps and shunt VAR compensation 
devices, which were considered as nodes of the 
implemented AS-graph. Results are compared to 
those given by Simulated Annealing for IEEE 30-bus 
test system, exhibiting superior performance in the 
cost of power system satisfying all mild constraints.    
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