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Abstract: A hot strip mill for the production of steel is a complex process where
nonlinear dynamic phenomena occur and many control loops need to be tuned taking
into account their interference. The control problem of the interstand tension and
looper arm position is addressed in this paper. With respect to the conventional PID
control approach, our investigation aims at exploiting nonlinear control techniques
based on the backstepping methodology in order to improve the performance along
with the requirements of the most modern rolling mills where short off-gauge lengths
are desired even for thin products (0.7-1.2 mm) and for setup on the fly of the plant.
The design of the controller is described in detail and several simulation trials are
reported showing the effectiveness of the control scheme under the action of typical
disturbance inputs. Copyright c© 2005 IFAC
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1. INTRODUCTION

A hot strip mill is one of the most effective tools
in flat rolling. The last part of a hot strip mill
– the finishing mill, allows reducing the thickness
of the flat steel to the planned value by means
of consecutive rolling stands reaching even very
thin values. This complex process presents several
control aspects that are continuously subject to
research activities in order to achieve excellence
in quality of the produced steel and in achieving
improved productivity of the plant.

In the finishing mill, to achieve the required reduc-
tion and the final qualities and tolerances, several
passes of rolling are executed by tandem rolling
with 5–7 successive stands.

Tension control turns out to be the key to stable
mill. For instance, we experienced that during
Automatic Gauge Control (AGC) tuning, strip
tension can present wide fluctuations due to quick

roll gap movements. On the other hand, when
tension fluctuations are kept limited as much as
possible, the performance of the AGC system can
be improved as desired. Proper positioning of the
looper is also important for stable operations, so
the problem is to design a simultaneous control
scheme for looper position and interstand tension.

In the literature, many control techniques have
been proposed for the control of the interstand
looper (see, for instance (An et al., 2001; Asano
et al., 2000)). In particular, multivariable con-
trol techniques have been proposed to take into
account the interaction between these two main
control loops (see e.g. (Cuzzola and Boriani, 2003;
Hearns et al., 2004; Fukushima et al., 1988; Hearns
and Grimble, 2000)). Multivariable controllers
have been experimented in real steel plants (for in-
stance, the Sovel SA mill, Greece and the Algoma
Mill, Canada, have been equipped of multivariable
controllers).



The introduction of a nonlinear control technique
(see (Hesketh et al., 1988),(Furlan et al., 2004)
and the references cited therein for a recent re-
view about the topic) leads to two further ad-
vantages. First of all, the controller is not based
on a linearized model and, consequently, it is
expected to be more efficient in a wide range of
working situations. Secondly, the application of
a gauge setup “on the fly” used to increase the
productivity of a plant, produces transient modes
of behavior for which the nonlinear effect can
hardly be considered negligible and needs a more
accurate compensation based on nonlinear control
techniques, see (Kugi et al., 2004).

In the paper, due to the particular structure of
the dynamic model of the interstand looper, the
nonlinear control scheme is designed according to
a standard backstepping methodology (see (Krstić
et al., 1995; Hesketh et al., 1988)) which turned
out to be particularly effective.

The paper is organized as follows. In Section 2
the basic control problem under concern will be
formulated while in Section 3, the modelling of
the interstand dynamics will be addressed. Sub-
sequently, in Section 4, the design of the back-
stepping controller will be extensively illustrated
and, finally, simulation results showing the effec-
tiveness of the control scheme will be reported in
Section 5.

NOTATIONS

- hi strip exit thickness for the i-th stand;
- σ strip tension;
- w is the strip width;
- vi strip exit speed to the i-th stand;
- V i+1 strip entry speed to the (i+1)-th stand;
- r radius of the looper roll;
- R work roll radius;
- θ looper angular position;
- Mr looper roll mass;
- Mb looper arm mass;
- Mcp looper counterweight mass;
- l looper length ;
- lcp counterweight length;
- Tu the motor torque on the looper;
- η the looper angular speed;
- ρ the steel density.

2. THE TENSION CONTROL PROBLEM IN
THE FINISHING MILL

As is well known, the looper is located approx-
imately midway between adjacent stands of the
steel finishing mill. The looper is raised above the
pass line so that it forms a loop of the stored strip.

Tension control in finishing mills is very important
owing to the following facts:

(1) The interstand tension must be kept as much
as possible constant in order to avoid exces-
sive fluctuations of the AGC and to guaran-
tee the safety of the plant;

(2) closed–loop regulation of the interstand ten-
sion allows for independent thickness correc-
tions to be made on individual stands while
maintaining smooth mass flow through the
mill.

The following aspects should also be taken into
account in the design of the controller for the
looper.

(3) Assuming negligible plastic deformations of
the steel, the tension is governed by stretch
and the elastic constant of the steel (Young
Modulus). The stretch is determined by the
difference between the stored strip length and
the loop length formed in the in the two
stands by the looper.

(4) the stored strip length between the stands is
given as the time integration of the difference
in the strip velocity between the upstream
and downstream stands.

(5) the loop length can be adjusted by ma-
nipulating the looper angle, whereby stored
length changes can be absorbed.

Since excess fluctuations of the angle may lead
to unstable rolling, the looper angle should also
be considered a controlled variable. Therefore,
the typical control problem is to regulate the
looper angle and tension simultaneously. In the
next section, a state–space model of the interstand
dynamics will be briefly described. This model
will be subsequently used to design the nonlinear
controller.

3. MATHEMATICAL MODELLING OF THE
INTERSTAND DYNAMICS

In Fig. 1, a pair of consecutive rolling stands (with
the looper as well) is depicted; the strip is depicted
by the straight line. The geometrical quantities
are defined in the figure and will be used to design
the overall dynamic model. In the following, the
dynamic models for each part of the system will
be devised.

The looper dynamic behavior is described by the
following law

Jθ̈ = Tu − Tload − Td + ωη

where:

- J is the looper inertia;
- Tload is the load torque;
- Td represents the friction effect on the looper;
- ωη represent the model uncertainties.
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Fig. 1. Looper and interstand geometry.

The load torque is due to several phenomena

Tload = Tσ + Ts + Tlw + Tb

where:

• Tσ is the torque due to to the strip tension;

Tσ = σwhF (θ)

and F (θ) is the arm of the strip tension with
respect to the looper focus:

F (θ) = [ (l sin θ + r)(cos θ2 − cos θ1)

+l cos θ(sin θ1 + sin θ2) ]

• Ts is the torque due to the strip weight Ps

Ts = Psl cos θ = ρgwh[l1(θ) + l2(θ)]l cos θ

• Tlw is the torque due to the weight of the
looper

Tlw = g cos θ

[
l(Mr +

Mb

2
) − lcpMcp

]

• Tb is the strip bending torque.

During transient mode of behavior, the loop
length Ls is subject to change if the exit strip
speed of the upstream stand is different wrt the
entry strip speed for of the downstream stand
according to

Ls = L + ξ(t) = L +
∫ t

0

(vi − V i+1)dτ

where L is the initial loop length and consequently

ξ̇(t) = vi − V i+1 + ωξ

where the term ωξ denotes the unmodeled dynam-
ics.

Assuming an elastic behavior of the material, σ
can be derived from the Young Modulus (E) of
the steel according to

σ =
E

L + ξ(t)

[
F2(θ) − ξ(t)

]

with F2(θ) = Ls − L and L � ξ(t). It is worth
pointing out that the Young Modulus cannot be
considered independent of the steel grade or the
strip temperature but in the following we will
assume it uniform along the strip. From the last

equation is it easy to derive the dynamic law valid
for the strip tension

σ̇ = F1

[
∂F2(θ)

∂θ
θ̇ − ξ̇(t)

]

= F1

[
∂F2(θ)

∂θ
η − vi − V i+1 + ωξ

]

where F1 =
E

L
is a constant.

Summing up, the dynamics of the considered non-
linear system to be controlled can be described by
means of the following nonlinear state equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

θ̇(t) = η(t)

η̇(t) =
1
J

[
Tu − Tload + ωη

]
σ̇(t) = F1

[
F3(θ)η − v(t) − ωξ

]
v̇(t) = −Kv(t) + Kuv(t)

(1)

where v̄ = vi − V i+1 and the parameter K is
used to describe the closed loop effect of the stand
Automatic Speed Regulator (ASR).

The control problem addressed in the next section
will consist in designing the control signals Tu and
uv in order to regulate both the strip tension and
the looper angular position.

4. DESIGN OF THE NONLINEAR
CONTROLLER

First, we note that the Looper Current Control
yielding the looper torque has a very fast dynam-
ics. Therefore, we can write Tu = clu1 where cl

is a known constant gain. Hence we have

η̇ =
1
J

[cl u1(t) − F3(θ)σ − Ts − Tlw + ωη]

Letting

u1(t) =
1
cl

[
F3(θ)σref + Ts + Tlw

]
+

J

cl
û1(t)

where û1(t) is the new control signal, we obtain
the state equation

η̇(t) =
1
J

F3(θ)
[
σref − σ(t)

]
+ û1(t)

with σref denoting the strip tension reference.
The control objective is to design a nonlinear
controller providing the control signals û1(t) and
uv(t) that keep the tension error as small as
possible while guaranteeing a stable behavior for
the looper dynamics.

By introducing the error variables 1 θe(t) �
[θ(t) − θref ] and σe(t) � [σ(t) − σref ] , the state
equations can be rewritten as

1 All the figures reported in this paper refer to the SOVEL
SA mill, Greece. In the following we consider the set point
θref = 25 [◦], σref = 3.9 [MPa].



⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ̇e = η

η̇ = − 1
J

F3(θ)σe + û1

σ̇e = F1

[
F3(θ)η − v̄ − ωξ

]
˙̄v = −Kv̄ + Kuv

(2)

If we set the control variables to zero, then
[θ̄e, 0, 0, 0] is an equilibrium point for any pos-
sible value of θ̄e. This means that a stabilizing
controller will achieve its objective irrespective of
the actual value of the looper angle θ. In practice,
this is not an issue because the goal is to control
the tension with a stable dynamics of the looper
and the actual angle is not of interest provided it
belongs to some reasonable interval (e.g., 10◦ ÷
70◦).

Now, we design the controller using a backstep-
ping (BS) procedure (see, for instance, (Krstić et
al., 1995)). To this end, for the sake of notational
convenience, we rewrite (the meaning of the sym-
bols is obvious) the state equations (2) as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = − 1
J

F3(x1)x3 + û1

ẋ3 = F1

[
F3(x1)x2 − x4

]
ẋ4 = −Kx4 + Kuv

(3)

where the uncertainty term ωξ will be neglected
in the following and will be re-considered in the
simulation analysis. Dynamic system (3) is in
strict–feedback form. Therefore the integrator–
backstepping procedure can be applied without
conceptual difficulties.

The first BS step is very easy. By setting

û1 = −k1x2 (4)

where k1 > 1 is a constant gain, we ensure that
the dynamic behavior of the first state variable
obeys the asymptotically stable law ẋ1 = −k1x1 .
Now we let z1 � x2 − k1x1 and then

ż1 = − 1
J

F3(x1)x3 + û1 + k1x2

Imposing
ż1 = −k2z2

where k2 > 1 is another constant gain, we finish
the first BS step. We obtain the new state equa-
tions ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = − 1
J

F3(x1)x3 − k1x1

ẋ3 = F1

[
F3(x1)x2 − x4

]
ẋ4 = −Kx4 + Kuv

(5)

where in the second BS step the controller should
be designed in such a way that the variable x3

tracks the stabilizing term

α2(x1, x2) =
k2J

F3(x1)
(x2 + k1x1)

To carry out the second BS step, we consider the
equations

⎧⎪⎨
⎪⎩

ẋ1 = x2

ẋ2 = −k1x2 − 1
J

F3(x1)x3

ẋ3 = u

(6)

We let z2 � x3 − α2(x1, x2) . Computing the
time derivative and imposing a stable dynamics
ż2 = −k3z2, with k3 > 1, after some algebra we
obtain

u = F1

[
F3(x1)x2 − α3(x1, x2, x3)

]
where the stabilizing term α3(x1, x2, x3) that
state variable x4 has to track is given by

α(x1, x2, x3) = F3(x1)x2

+
1
F1

[
k2J(x2 + k1x1)

(
Ḟ3(x1)
F3(x1)2

− k3

F3(x1)

)
x2

+(k2 + k3)x3

]

To carry out the third BS step, we consider the
equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −k1x2 − 1
J

F3(x1)x3

ẋ3 = F1[F3(x1)x2 − x4]
ẋ4 = u.

(7)

We let z3 � x4 − α3(x1, x2, x3) . Computing the
time derivative and imposing a stable dynamics
ż3 = −Kz3, again after some algebra, we obtain
that the control signal uv should take on the form

uv = α3(x1, x2, x3) +
∂α3

∂x1
ẋ1 +

∂α3

∂x2
ẋ2 +

∂α3

∂x3
ẋ3

(8)
The computation of the partial derivatives in-
volved in (8) finally gives

∂α3

∂x1
ẋ1 = Ḟ3(x1)x2

2 +
k2J

F1

[
k1

Ḟ3(x1)
F3(x1)2

x2
2

+(x2 + k1x1)
F̈3(x1)
F3(x1)2

x2
2 − 2(x2 + k1x1)

Ḟ3(x1)2

F3(x1)3
x2

2

−k1k3x2

F3(x1)
+ k3(x2 + k1x1)

Ḟ3(x1)
F3(x1)2

x2

]

∂α3

∂x2
ẋ2 =

{
F3(x1) +

k2J

F1

[
(2x2 + k1x1)

Ḟ3(x1)
F3(x1)2

− k3

F3(x1)

]}

∂α3

∂x3
ẋ3 = (k2 + k3)[F3(x1)x2 − ξ]

Remarks

(1) The nonlinear control law given by (4) and
(8) guarantees the asymptotic stability of
the equilibrium points. Clearly, the choice
of the constant gains strongly influences the
performances of the closed–loop system.



(2) The controller requires full–state measure-
ments. This is a very strong assumption. In
this respect, while measuring angular posi-
tion and velocity of the looper is not a big
issue and it is just a matter of availabil-
ity of sensors, the availability of the other
state variables remains a strong requirement.
Therefore, a suitable estimation technique
should be considered. In the next section,
an Extended Kalman filter is used. However,
other choices may be considered like, for in-
stance, high gain nonlinear observers, etc.

5. SIMULATION RESULTS

As previously mentioned, an Extended Kalman
Filter (EKF) has been designed to estimate the
non–measurable variables σ and vi assuming the
angular position and velocity of the looper to be
perfectly measurable. 2

In the following we report some of the main
simulation parameters and characteristics of the
simulated disturbances. More specifically,we set
controller gains as k1 = 100, k2 = 1000, k3 =
1000 . The covariance matrices of the EKF have
been chosen as Q = diag (10−4, 10−4, 10−3, 102)
and R = diag (10−5, 10−3) . The initial values of
the state variables have been set to the desired
equilibrium state, that is: θ(0) = 25◦, η(0) =
0 [m/s], σ(0) = 3.9 [MPa], v̄(0) = 0 [m/s].

In the following we propose some simulation ex-
periments. In particular we consider the following
three kinds of disturbances:

(1) ∆θref denoting a measurement disturbance
on the angular looper position. We consider
a step disturbance occurring for t ≥ 0.5 [s]
with an amplitude ∆θref = 0.2 · θref .

(2) ∆σref denoting a measurement disturbance
on the strip tension. We consider a step
disturbance occurring for t ≥ 0.5 [s] with an
amplitude σref = 0.5 · σref .

5.1 Step disturbance on the looper position reference

In Figures 2, 3 and 4, we report the time histories
of the looper position error and strip tension error
due to a step variation of the looper position
reference. In Figure 4 we report the performance
provided by the EKF for the estimation of the
forward slip.

2 We notice in passing that the knowledge of the exit strip
speed vi (and consequently of the strip tension σ) is not a
trivial task (see (Roberts, 1988)). Fortunately, the use of
the EKF offers also the possibility to achieve by–product
an online estimation of the forward slip and consequently of
vi. This estimation represents an improvement compared
to the offline estimation provided by the process computer.

As can be seen the performance of the proposed
controlled seems robust towards the sudden vari-
ation of the looper working point-
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Fig. 2. Looper position error ∆θ due to a step
disturbance on the looper position reference
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Fig. 3. Strip tension error ∆σ due to a step
disturbance on the looper position reference

0.4 0.45 0.5 0.55 0.6 0.65 0.7

953.2

953.4

953.6

953.8

954

954.2

954.4

954.6

Time [sec.]

F
or

w
ar

d 
S

lip
 E

st
im

at
io

n 
X

 1
00

0 
[−

]

Fig. 4. Forward Slip Estimation by EKF with a
disturbance on the looper position reference



5.2 Step disturbance on the strip tension

In this subsection we point out (Figures 5, 6 and
7) the performance obtained with a step variation
in the strip tension. This type of disturbance can
turn out the most critical in many situations and
can be due to a sudden problem of the upstream
stand or a variation in the strip thickness.
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Fig. 5. Looper position error ∆θ due to a step
disturbance on the strip tension
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Fig. 6. Strip tension error ∆σ due to a step
disturbance on the strip tension
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