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Abstract: This paper deals with the stability analysis and anti-windup design of
discrete-time systems subject to actuator saturation. We present a new saturation-
dependent Lyapunov function to estimate the domain of attraction, which is then
formulated and solved as a constrained LMI optimization problem. Further we
propose an anti-windup compensation method to enlarge the domain of attraction
in the presence of saturation. Numerical examples are presented to show the
effectiveness of the proposed method. Copyright c©2005 IFAC
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1. INTRODUCTION

Due to the practical significance and the theoret-
ical challenges, problems for systems subject to
saturation have attracted tremendous attention
in recent years (Kapoor et al., 1998; Blanchini,
1999; Zaccarian and Teel, 2002; Hu et al., 2002).
Generally, the global stability of the systems sub-
ject to actuator saturation can be achieved only
when the open-loop system is not strictly unsta-
ble. With respect to the discrete-time cases, poles
must be inside or on the unite circle of the complex
plane for the system to be stable (Sussmann et
al., 1994; Lin and Saberi, 1995). Therefore there
are numerous reports on the local stability and
semi-global stability analysis (da Silva Jr. and
Tarbouriech, 2001; Cao and Lin, 2003).

One of the main aspects concerning the local
stability analysis is the analytical characterization
of the domain of attraction. Many methods have
been adopted to maximize the invariant set, which
has been believed to be very hard except for some
special cases (Hu et al., 2001; Blanchini, 1999).
The reduction of conservatism and the enlarging
of invariant set inside the domain of attraction are
the two hot topics, which have drawn much atten-
tion. Generally speaking, the existing methods on
estimating the stability regions for linear systems

with saturating actuators are mainly based on the
concept of Lyapunov function level set. One of
the most frequently used Lyapunov functions is
quadratic Lyapunov function (Hu et al., 2002).

A new sufficient condition for an ellipsoid to be
invariant was presented in (Hu et al., 2002) for
discrete-time systems subject to actuator satura-
tion, which is less conservative than the tradi-
tional circle criterion. The resulting estimate of
domain of attraction is a level set of a quadratic
Lyapunov function. Other than quadratic Lya-
punov function, many other Lyapunov functions,
such as piecewise-affine Lyapunov functions, were
also adopted to cope with the problem for ex-
ample (Milani, 2001). More recently, in (Cao and
Lin, 2003), the quadratic Lyapunov function ap-
proach was extended and a saturation-dependent
Lyapunov function was developed to reduce the
conservatism in the estimation of domain of at-
traction. A drawback of the approach is that the
estimate of the domain of attraction in (Cao and
Lin, 2003) is just an intersection of a set of ellip-
soids, which leads to conservatism of this method.
In (Hu and Lin, 2003), a new Lyapunov func-
tion as so-called composite quadratic Lyapunov
function was developed to cope with the stability
problem for linear continuous-time systems.



This paper aims at the less conservative saturation-
dependent Lyapunov function method to enlarge
the domain of attraction for the discrete-time sys-
tems subject to actuator saturation. Our goal is
to further reduce the conservatism in the estima-
tion of the domain of attraction through a new
saturation-dependent Lyapunov function. We also
present an anti-windup compensation method to
further enlarge the domain of attraction with the
iterative approach proposed in (Cao et al., 2002).

2. PRELIMINARIES

Consider the system with actuator saturation.

x(k + 1) = Ax(k) + Bσ(u(k)). (1)

where x ∈ Rn denotes the state vector, u ∈ Rm

the input vector and A,B are real-valued matri-
ces. The function σ is the standard vector-valued
saturation function σ(u) =

[
σ(u1) . . . σ(um)

]T
,

where σ(ui) = sign(ui)min{1, |ui|}.
Consider the following linear state feedback law

u(k) = Fx(k). (2)

We want to know how the closed-loop system be-
haves in the presence of saturation, in particular,
to what extent the stability is preserved. In the
first step, we aim at obtaining an estimate of the
domain of attraction of the origin of the closed-
loop system.

x(k + 1) = Ax(k) + Bσ(Fx(k)). (3)

Let fi be the i-th row of the matrix F . We define
the symmetric polyhedron L(F ) = {x ∈ Rn :
|fix| ≤ 1, i = 1, 2, . . . ,m}.
For x(0) = x0 ∈ Rn, denote the state trajectory
of the system (3) as ψ(k, x0) at time k. Then the
domain of attraction of the origin is S := {x0 ∈
Rn : lim k→∞ψ(k, x0) = 0}. A set is said to be
invariant if all the trajectories starting from it will
remain in it (Blanchini, 1999).

Let P ∈ Rn×n be a positive-definite matrix. For
a number ρ > 0, an ellipsoid Ω(P, ρ) is defined as
Ω(P, ρ) =

{
x ∈ Rn : xTPx ≤ ρ

}
.

Let V be the set of m×m diagonal matrices whose
diagonal elements are either 1 or 0. There are
2m elements in V . Suppose that each element of
V is labeled as Ei, i = 1, 2, . . . , 2m, and denotes
E−

i = I − Ei. Clearly, E−
i ∈ V if Ei ∈ V .

Lemma 1. (Hu et al., 2002) Let F,H ∈ Rm×n be
given. For an x ∈ Rn, if x ∈ L(H), then

σ(Fx) ∈ co
{
EiFx + E−

i Hx : i ∈ [1, 2m]
}
,

where co{·} denotes the convex hull of a set.
Consequently, σ(Fx) can be expressed as

σ(Fx) =
2m∑
i=1

ηi(EiF + E−
i H)x, (4)

where ηi(k) is a parameter related to the severity
of saturation and

∑2m

i=1 ηi(k) = 1, 0 ≤ ηi(k) ≤ 1.

Note that one of the main advantages of the above
lemma is that σ(Fx(k)) can be represented as a
convex hull of a group of linear feedback, which
will be seen in the following sections.

3. A SATURATION-DEPENDENT
LYAPUNOV FUNCTION

In this section, we will introduce a new saturation-
dependent Lyapunov function to estimate the
domain of attraction for the saturated system (3)
by the invariant set approach.

To clearly present the problem, we denote Âi =
A + B(EiF + E−

i H), where H ∈ Rm×n satisfies
||Hx||∞ ≤ 1. Following Lemma 1, we can rewrite
the closed-loop system as follows

x(k + 1) = Â(η(k))x(k), ∀x ∈ L(H), (5)

where Â(η(k)) :=
∑2m

i=1 ηi(k)Âi

=
2m∑
i=1

ηi(k)(A + B(EiF + E−
i H)) (6)

and η(k) =
[
η1(k) η2(k) . . . η2m(k)

]
is a time-

varying parameter dependent on x(k) and 0 ≤
ηi(k) ≤ 1,

∑2m

i=1 ηi(k) = 1. It is easy to see
that parameter η(k) depends on amplitude of the
saturation (Cao and Lin, 2003).

With P > 0, a quadratic Lyapunov function can
be defined as V (x(k)) = xT Px. For a ρ > 0, a
level set of V (·), denoted LV (ρ), is

LV (ρ) := {x ∈ Rn : V (x(k)) ≤ ρ} = Ω(P, ρ).

It is noticed that the unknown but measurable
time-varying parameters η(k) can provide real-
time information on the variations of the satu-
ration. To reduce the conservatism in analyzing
the stability of the saturated system (3), it is
desirable to use this information. Based on this
idea, (Cao and Lin, 2003) introduced the following
saturation-dependent Lyapunov function

V (x(k)) = xT (k)P (η(k))x(k), (7)

where P (η(k)) =
∑2m

i=1 ηi(k)Pi, Pi > 0. Then
the estimation of the domain of attraction is
obtained by the Lyapunov level set Ωη(P (η), ρ) ={
x ∈ Rn : xT P (η)x ≤ ρ

}
. However, it is easy to

see that the region Ωη(P (η), ρ) is the intersection
of the ellipsoids Ω(Pi, ρ), i.e.

Ωη(P (η), ρ) = ∩2m

i=1Ω(Pi, ρ).



Because of the characteristic of the intersection
of sets, it is easy to see that the above method
may still be conservative. Now we introduce a new
saturation-dependent Lyapunov function for the
discrete-time system (3) similar to the composite
Lyapunov function described in (Hu and Lin,
2003). Let Qi = (Pi/ρ)

−1 , i ∈ [1, 2m]. We change
the definition of P (η(k)) in (7) as follows

P (η(x(k))) : = ρQ(η(x(k)))−1, (8)

Q(η(x(k))) : =
2m∑
i=1

η(x(k))Qi, (9)

If we set Qi = Q1 for all i, V (x(k)) will become
the common quadratic Lyapunov function. This
new saturation-dependent Lyapunov function has
a very desirable property, which will be presented
in what follows. In (Hu and Lin, 2003), the authors
proposed a composite Lyapunov function

Vc(x) = min
γ∈Γ

xT P (γ)x, (10)

where P (γ) = Q−1(γ), Q(γ) =
∑N

i=1 γiQi and

Γ =
{
γ ∈ RN :

∑N
i=1 γi = 1, 0 ≤ γi ≤ 1

}
. For

this Lyapunov function, the level set LV (ρ) =
co{Ω(Pi, ρ), i ∈ [1, N ]} = ∪γ∈ΓΩ(P (γ), ρ). Obvi-
ously, our saturation-dependent Lyapunov func-
tion (7) is different to the composite Lyapunov
function (10) although it uses the same structure,
see (8) and (9). In what follows, we will show that
we can use ∪2m

i=1Ω(Pi, ρ) to estimate LV (ρ), while
we can only use ∩2m

i=1Ω(Pi, ρ) to estimate LV (ρ)
in (Cao and Lin, 2003).

The closed-loop system (3) is asymptotically sta-
ble at the origin with the level set LV (ρ) contained
in the domain of attraction if LV (ρ) ⊂ L(H) and

�V (x(k)) = xT (k)

[
(

2m∑
i=1

ηi(k)ÂT
i )P (η(k + 1))

(
2m∑
i=1

ηi(k)Âi) − P (η(k))

]
x(k) < 0

for any x(k) ∈ LV (ρ) \ {0}. In what follows, a
condition under which �V (x(k)) < 0 holds will
be given for the general P (η(k)).

Theorem 2. Consider the closed-loop system (3).
If there exist matrices X,H,Qi > 0, i =
1, 2, . . . , 2m, such that

[
X + XT −Qi XT ÂT

i

ÂiX Qj

]
> 0, i, j ∈ [1, 2m](11)

and LV (ρ) ⊂ L(H) with Pi = ρQ−1
i , then the

closed-loop system (3) is asymptotically stable at
the origin with the level set LV (ρ) contained in
the domain of attraction.

Proof. As mentioned above, for any x ∈ LV (ρ) ⊂
L(H), �V (x(k)) < 0 for any x(k) ∈ LV (ρ) \ {0},
if �V (x(k)) = ÂT (η(k))P (η(k + 1))Â(η(k)) −
P (η(k)) < 0. Based on the Schur complement,
it is equivalent to[

P (η(k)) ÂT (η(x(k)))
Â(x(k)) P−1(η(k + 1))

]
> 0,

which is equivalent to

[
XTQ−1(η(k))X XT ÂT (η(x(k)))

Â(x(k))X Q(η(k + 1))

]
> 0 (12)

for any matrix X ∈ Rn×n. Note that (X −
Q(η))T Q−1(η)(X −Q(η)) ≥ 0, we have

XTQ−1(η(k))X ≥ X + XT −Q(η),

which implies that (12) holds if[
X + XT −Q(η) XT ÂT (η(x(k)))

Â(x(k))X P−1(η(k + 1))

]
> 0

The left side can be rewritten as


X + XT −
2m∑
i=1

ηi(k)Qi ∗(
2m∑
i=1

ηi(k)Ai

)
X

2m∑
j=1

ηj(k + 1)Qj




=
2m∑
i=1

ηi(k)
2m∑
j=1

ηj(k + 1)
[
X + XT −Qi XT ÂT

i

ÂiX Qj

]

where ∗ represents blocks that are readily inferred
by symmetry. Hence, we have �V (x(k)) < 0,
∀x(k) ∈ LV (ρ) \ {0}, if (11) holds for all i, j ∈
[1, 2m]. And then we can conclude system (3) is
asymptotically stable at the origin with LV (ρ)
contained in the domain of attraction.

Note that Theorem 2 holds for any η ∈ Γ. It is
easy to see that Theorem 2 is irrelevant with η.
Moreover, if we set Qi = Q = X, ∀i ∈ [1, 2m],
inequality (11) becomes

[
Q QÂT

i

ÂiQ Q

]
> 0. (13)

Let P = Q−1, inequality (13) is equivalent to[
P ÂT

i P

PÂi P

]
> 0, ∀j ∈ [1, 2m].

Thus we recover Theorem 1 of (Hu et al., 2002). It
is easy to see that when the condition of Thereom
2 holds, we then have

[
XTQ−1

i X XT ÂT
i

ÂiX Qj

]
> 0 ⇒

[
Q−1

i ÂT
i

Âi Qj

]
> 0,

⇒ ÂT
i PjÂi − Pi < 0, ∀i, j ∈ [1, 2m].

We have ÂT
i PiÂi − Pi < 0, ∀i ∈ [1, 2m].



If we constrain Ω(Pi, ρ) ⊂ L(H), then Ω(Pi, ρ) is
an invariant set of the closed-loop system (3) (Hu
et al., 2002). So we have the following corollary.

Corollary 3. Consider the system (3) under a
given state feedback control matrix F . If there ex-
ist matrices X ∈ Rn×n, H ∈ Rm×n, Qi ∈ Rn×n,
and Qi > 0, i = 1, 2, . . . , 2m, such that[

X + XT −Qi XT ÂT
i

ÂiX Qj

]
> 0, ∀i, j ∈ [1, 2m],

and ∪2m

i=1Ω(Pi, ρ) ⊂ L(H) with Pi = ρQi, then
(3) is asymptotically stable at the origin with
∪2m

i=1Ω(Pi, ρ) contained in the domain of attrac-
tion.

4. ESTIMATION OF DOMAIN OF
ATTRACTION

Among all the level sets that satisfy the conditions
of Theorem 2, it is natural to choose the largest
one to obtain the least conservative estimate of the
domain of attraction. Generally, a shape reference
set, such as a polyhedron or ellipsoid, is adopted
to measure the size of the domain of attraction
(Hu et al., 2002). Let XR ⊂ Rn be a prescribed
bounded convex set containing the origin. For a
set L ⊂ Rn which contains the origin, define
αXR(L) := sup{α > 0 : αXR ⊂ L}. We choose
XR to be a polyhedron defined as

XR = co{x1, x2, . . . , xl}. (14)

Another frequently used reference set is ellipsoid
XR = {x ∈ Rn : xTRx ≤ 1, R > 0}.
Theorem 2 gives a condition for the level set
LV (ρ) to be inside the domain of attraction. With
the above shape reference sets, we can choose
from all the LV (ρ)’s that satisfy the condition
of Theorem 2 such that the quantity αXR is
maximized. This problem can be formulated as
the following constrained optimization problem:

min
Qi>0,X,H

α, (15)

s.t. (a) αXR ⊂ LV (ρ),

(b) inequalities (11),

(c) |hix| ≤ 1 ∀x ∈ LV (ρ).

where hi denotes the ith row of H .

By Corollary 3, we can substitute LV (ρ) with
∪2m

i=1Ω(Pi, ρ). Problem (15) can be reduced to the
following constrained optimization problem.

max
Qi>0,H,X

α s.t. (16)

(a) αXR ⊂ Ω(Pi, ρ), ∀i ∈ [1, 2m]

(b) inequalities (11),

(c) |hix| ≤ 1, ∀x ∈ Ω(Pj , ρ), ∀j ∈ [1, 2m], i ∈ [1,m]

Optimization problem (16) can be reduced to
an LMI optimization problem. Without loss of
generality, we will let ρ = 1 in what follows. First
note that Constraint (a) of (15) is equivalent to

α2xT
j (P (η))xj ≤ 1⇔

[
α−2 xT

j

xj Qi

]
≥ 0

Condition (b) is equivalent to[
X + XT −Qi ∗

AX + B(EiFX + E−
i HX) Qj

]
> 0,

for ∀i, j ∈ [1, 2m], i.e.[
X + XT −Qi ∗

AX + B(EiFX + E−
i Z) Qj

]
> 0, ∀i, j ∈ [1, 2m],

where Z = HX. Let zj = hjX . Condition (c) is
equivalent to

hjP
−1(η)hT

j ≤ 1 ⇔
[

1 hj

hT
j Q−1

i

]
≥ 0,

⇐
[

1 zj

zT
j X + XT −Qi

]
≥ 0, (17)

Based on the description above, the problem of en-
larging the domain of attraction can be reduced to
an LMI optimization problem defined as follows.

min
Qi>0,X,Z

γ, s.t. (18)

(a)
[

γ xT
j

xj Qi

]
≥ 0, ∀j ∈ [1, l], i ∈ [1, 2m],

(b)
[

X + XT −Qi ∗
AX + B(EiFX + E−

i HX) Qj

]
> 0,

∀i, j ∈ [1, 2m]

(c)
[

1 zj

zT
j X + XT −Qi

]
≥ 0, j ∈ [1,m], i ∈ [1, 2m]

where γ = α−2.

It is clear that constraints (b) and (c) ensure that
the level set LV (ρ) is contained in the domain
of attraction. Using the LMI tool to solve this
optimization problem, we can obtain a set of Pi.
By Corollary 3, the obtained estimation is the
union of this set of ellipsoids. This property can
generally reduce the conservatism in the estima-
tion of the domain of attraction.

5. DESIGN OF ANTI-WINDUP
COMPENSATION GAIN

Consider the system subject to input saturation

x(k + 1) = Ax(k) + Bσ(u(k)), (19)

y(k) = Cx(k). (20)

We assume a dynamic compensator of the form



xc(k + 1) = Acxc(k) + Bcy(k), xc(0) = 0,

u(k) = Ccxc(k) + Dcy(k),

where xc(k) ∈ Rnc , has been designed. This
compensator is designed to stabilize (19) and to
meet the required performance specifications in
the absence of actuator saturation .

A typical anti-windup compensator involves adding
a correction term of the form Ec(σ(u(k)) − u(k))
with the modified compensator

xc(k + 1) = Acxc(k) + Bcy(k) + Ec(σ(u(k)) − u(k))

u(k) = Ccxc(k) + Dcy(k),

with xc(0) = 0. Under the compensated con-
troller, the closed-loop system can be written as

x̃c(k + 1) = Ãcx̃c(k) + B̃c(σ(u(k)) − u(k))(21)

u(k) = F x̃(k), (22)

where

x̃ =
[

x
xc

]
, Ã =

[
A + BDcC BCc

BcC AC

]
,

B̃ =
[

B
Ec

]
, F =

[
DcC Cc

]
.

With the feedback control law (22), the system
(21) can be rewritten as

x̃(k + 1) = (Ã− B̃F )x̃(k) + B̃σ(F x̃(k))). (23)

For the closed-loop system (23), we can directly
apply the method presented in Section 4 to obtain
an estimation of domain of attraction. Substitute
A, and B in (18) with Ã− B̃F , and B̃, we obtain

min
Qi>0,X,Z

γ, s.t. (24)

(a)
[

γ xT
j

xj Qi

]
≥ 0, ∀j ∈ [1, l], i ∈ [1, 2m],

(b)
[

X + XT −Qi ∗
ÃX − B̃FX + B̃(EiFX + E−

i Z) Qj

]
> 0, ∀i, j ∈ [1, 2m]

(c)
[

1 zj

zT
j X + XT −Qi

]
≥ 0, j ∈ [1,m], i ∈ [1, 2m]

where γ = α−2.

In (24), if Ec is prefixed, then it is an LMI opti-
mization problem to estimate the domain of at-
traction of the closed-loop system in the presence
of actuator saturation. As introduced in (Cao et
al., 2002), we can use Ec as a free design parame-
ter to enlarge the domain of attraction and hence
improve the stability of the closed-loop system in
the presence of actuator saturation. Similar to the
method used in (Cao et al., 2002), we will present

an iterative design approach to obtain the anti-
windup compensation gain such that the domain
of the attraction may be as large as possible.

Note that constraint (b) in optimization problem
(24) is not linear in Ec, Qi, and Z simultaneously.
This implies we may not solve the optimal anti-
windup compensation gain by directly solving an
constrained LMI optimization problem. In what
follows, an iterative algorithm will be presented
to compute the anti-windup compensation gain.

Denote B̃1 =
[
B
0

]
, B̃2 =

[
0
Ec

]
, Note that, if

H and X are fixed, constraints (b) in (24) can be
rewritten to[

XT + X −Qi ∗
(Ã + B̃1Mi)X + (B̃2Mi)X Qj

]
, (25)

where Mi = −F + EiF + E−
i H . Obviously with

fixed H and X , (25) is linear in Ec and Qi. Hence,
we can formulate a constrained optimization prob-
lem to design Ec to make the domain of attraction
as large as possible.

min
Qi>0,B̃2

γ, s.t. (26)

(a)
[

γ xT
j

xj Qi

]
≥ 0, ∀j ∈ [1, l], i ∈ [1, 2m],

(b, c) inequality (25), and (17).

Based on the above derivation, we present an
iterative LMI approach to design Ec such that the
closed-loop system has a domain of attraction as
large as possible.

Iterative Algorithm for Determination of Anti-
windup Compensation Gain Ec:

Step 1) Given reference set XR and Ec = 0,
solve the optimization problem (24). Denote the
solution as γ0, X0, Qi, and Z0. Set XR = γ

−1/2
0 XR.

Step 2) Set Ec with an initial value. Also set i = 1
and γopt = 1.

Step 3) Solve the optimization problem (24) for
γ,Qi, X , and Z. Denote the solution as γi, X,Qi,
and Z, respectively.

Step 4) Let γopt = γiγopt, XR = γ
−1/2
i XR, H =

ZX−1.

Step 5) If |γopt − γi| < σ, a pre-determined
tolerance, stop; Else goto Step 6).

Step 6) Solve the optimization problem (26) for
Ec with the X and H determined in Steps 3) and
4). Set i = i + 1 and goto Step 3).

6. NUMERICAL EXAMPLES

Example 1. First, we will present an example to
illustrate the effectiveness of our new saturation-
dependent Lyapunov function in estimation of
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Fig. 1. Domain of attraction at θ = 0.4π : ap-
proach of this paper – solid region; approach
of (Cao and Lin, 2003) – dotted region
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Fig. 2. Domain of attraction varying θ ∈ [0, 2π]:
approach of this paper – solid region; ap-
proach of (Cao and Lin, 2003) – dotted region

domain of attraction. Considering the following
closed-loop system with (Cao and Lin, 2003)

A =
[

1 1
0 1

]
, B =

[
0.5
1.0

]
.

We design the state feedback control law by the
LQR approach with Q = I and R = 0.1. For the
above system, we obtain the following controller,
F =

[−0.6167 −1.2703
]
. As in (Cao and Lin,

2003), we use the shape reference set of the form

XR =
{[

sin θ
cos θ

]}
, θ ∈ [0, 2π].

For this example, when θ = 0.4π, we have αc =
4.5235, which is same as that obtained in (Cao
and Lin, 2003). But we obtain a region which is
the union of a set of ellipsoids, which is larger
than that obtained in (Cao and Lin, 2003). Fig. 1
shows these estimates. The dotted curves to the
origin are trajectories starting from the bound of
the estimate. Fig. 2 shows the region obtained by
varying θ from 0 to 2π, i.e., η ∈ Γ. The out curve
is the borderline of the union of the ellipsoids.
Obviously, the region obtained by the approach

proposed in this paper is much larger than that
obtained in (Cao and Lin, 2003).

7. CONCLUSIONS

We considered linear discrete-time systems sub-
ject to actuator saturation. A new saturation-
dependent Lyapunov function was presented to
reduce the conservatism when estimating the do-
main of attraction. An iterative algorithm was for-
mulated to design the anti-windup compensation
gain to enlarge the domain of attraction.
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