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1. INTRODUCTION

Force-reflecting (or bilateral) teleoperation is a
challenging area of modern technology which in-
spires researchers from both the control theory
and robotics. A teleoperator system consists of
two manipulators connected by a communication
channel. The first manipulator, called master, is
moved by a human operator, and the information
about the master’s trajectory is sent through the
communication channel to the remotely located
second manipulator called slave. The slave is con-
trolled to follow the trajectory of the master. In
force-reflecting teleoperators, a contact force due
to environment is measured on the slave side and

sent back to the motors of the master. In the
presence of such a force feedback, the ability of the
operator to perform complex tasks that include
interaction with the environment may be essen-
tially increased. However, as first shown by Fer-
rell (1966), the force feedback has a strong desta-
bilizing effect if transmission delays are present in
the communication channels. This problem was
widely addressed in the literature, and several
approaches were proposed (see, for example (An-
derson and Spong, 1989; Niemeyer and Slotine,
1991), among other papers). Recently, an idea of
using a version of the ISS (input-to-state stability)
small gain theorem (Jiang et al., 1994) for the
proof of stability of bilaterally controlled teleop-



erators with communication delay was presented
in (Polushin and Marquez, 2003b). In this paper,
we present further contributions to the IOS (ISS)
small gain approach to the stabilization of force-
reflecting teleoperators with delay in the commu-
nication channel. In particular, we address the
situation when the transmission delay is a possibly
unbounded function of time rather than a con-
stant. The main motivation for the development
of a control scheme that can handle a time-varying
communication delay is based on the recent ten-
dency to use the Internet as a communication
medium. When teleoperation is performed over
the Internet, the transmission delays may vary
with such factors as congestion and bandwidth,
which leads to decreasing performance and arising
of the instability issues. This is a relatively new
area of research, and not so many results are
obtained (see (Chopra et al., 2003)). In this paper,
we propose a control scheme which guarantees
stability of the closed-loop telerobotic system in
the presence of an arbitrary time-varying possibly
unbounded transmission delay satisfying a set of
technical assumptions. Our stability analysis is
based on a special version of the IOS small gain
theorem. Also, the proposed scheme guarantees
(in the “semiglobal” sense with respect to ini-
tial conditions and external forces) that the slave
manipulator tracks the delayed trajectory of the
master with error which is ultimately bounded by
an arbitrarily small bound.

The structure of the paper is as follows. A state-
ment of the problem is formulated in section 2.
In section 3, a special version of the IOS small
gain theorem is given which is a main tool for
our proof of stability of the telerobotic system
with communication delay. The main result is pre-
sented in section 4. Some computer simulations of
the proposed algorithm can be found in section 5.
Conclusions are given in section 6. All the proofs
are omitted due to space reasons.

2. PROBLEM STATEMENT

Mathematical model of the master and the slave
manipulators. We consider a force-reflecting tele-
robotic system where the master and the slave ma-
nipulators are described by Euler-Lagrange equa-
tions of the following standard form

Hm (qm) q̈m + Cm (qm, q̇m) q̇m + Gm (qm)
= um + fh + f̂e,

(1)

Hs (qs) q̈s +Cs (qs, q̇s) q̇s +Gs (qs) = us + fe. (2)

Here qm ∈ Qm, qs ∈ Qs, where Qm, Qs are
the configuration spaces of the master and the
slave manipulators respectively. For simplicity,

assume that each manipulator has l rotational
joints and n − l prismatic joints with a finite
range of motion, l ∈ {0, . . . , n}. Thus Qm =
Qs = D × Tl, where Tl is an l-dimensional torus,
and D is a compact connected subset of Rn−l.
Further, Hm (qm), Hs (qs) are inertia matrices,
Cm (qm, q̇m), Cs (qs, q̇s) are matrices of centrifugal
and Coriolis forces, and Gm (qm), Gs (qs) are
vectors of potential forces of the master and the
slave manipulators respectively. Also, fh ∈ Rn is
a force applied by the human operator to move
the master manipulator, fe ∈ Rn is the contact
force due to the environment applied to the slave,
and f̂e ∈ Rn is the force applied to the motors of
the master that reflects the contact force due to
environment on the slave side. Finally, um, us ∈
Rn are the control inputs of the master and the
slave respectively. It is assumed that the dynamics
of the master and the slave manipulators (1), (2)
possess several well known properties (see, for
example, Section 2.1 of (Spong, 1996)).

Communication delay. The joint positions and
velocities of the master and the contact force due
to the environment applied to the slave are sent to
the opposite manipulator over a communication
channel with a communication delay. Let τi : R →
R+, i ∈ {f, b} be time-dependent time delays in
the forward (i = f) and backward (i = b) commu-
nication channel respectively. The joint positions
and velocities of the master are transmitted to the
slave side with communication delay τf (·), so that
the following signals

q̂m(t) = qm (t − τf (t)) ,
ˆ̇qm(t) = q̇m (t − τf (t)) ,

(3)

are available for the controller on the slave side.
On the other hand, a contact force due to the
environment fe is measured on the slave side and
transmitted back to the master with a communi-
cation delay τb(·), i.e.

f̂e(t) = fe (t − τb(t)) . (4)

Both τf (t), τb(t) are assumed to be time-varying
and possibly unbounded. More precisely, the as-
sumption imposed on τf (·), τb(·) is given below.

Assumption 1. Both τi, i ∈ {f, b}, satisfy the
following set of properties:

i) τi (t2) − τi (t1) ≤ t2 − t1 for any t2 ≥ t1;

ii) −Υ (t2 − t1) ≤ τi (t2) − τi (t1) for some Υ ≥ 0
and for any t2 ≥ t1.

iii) t − τi(t) → +∞ as t → +∞. •

Note that Assumption 1 can always be satisfied
for any lossless communication channel.



Dynamical model of the environment. It is as-
sumed that the environment can be described as
an unknown dynamical system whose dynamics
satisfy a form of input-to-output stability prop-
erty (Sontag and Wang, 1999). More precisely, the
following is valid:

Assumption 2. Suppose fe (·) is a measurable
locally essentially bounded function satisfying the
following property: there exist γf ≥ 0, γe ≥ 0 such
that the contact force due to the environment,
fe(t), satisfies the following two properties:

i) uniform boundedness: there exists C ≥ 0 such
that for any t0 ∈ R

sup
t≥t0

|fe(t)| ≤ max





C, γe

(
sup
t≥t0

∣∣∣∣
qs(t)
q̇s(t)

∣∣∣∣
)

,

γf

(
sup
t≥t0

|fext(t)|
)





;

ii) convergence:

lim sup
t→+∞

|fe(t)| ≤ max





γe

(
lim sup
t→+∞

∣∣∣∣
qs(t)
q̇s(t)

∣∣∣∣
)

,

γf

(
lim sup
t→+∞

|fext(t)|
)





.

Here qs(t), q̇s(t) are the state variables (position
and velocity) of the slave manipulator, and fext

is an arbitrary measurement essentially bounded
function that represents an equivalent of all exter-
nal forces imposed on the environment.

Problem statement. Our control design problem
can be formulated as follows: design local con-
trollers for both the master and the slave manip-
ulators that

i) guarantee the tracking of the (delayed) master
trajectory by the slave manipulator;

ii) guarantee the stability of the overall force-
reflecting telerobotic system.

3. TOOLS: INPUT-TO-OUTPUT STABILITY
FOR FDE AND IOS SMALL GAIN THEOREM

For the purpose of stability analysis of the telero-
botic system with communication delay, we need
to establish a specific IOS small gain result that
guarantees stability of a feedback systems with
components connected through time-varying de-
lay blocks. An appropriate mathematical object
that describes such an interconnection is a sys-
tem of functional-differential equations (FDE).
We follow standard notation (Hale, 1977). Given
a function x : R → Rn, denote xt(s) := x(t − s),
where s ≥ 0. Consider a system of functional
differential equations with l inputs and r outputs
of the following form

ẋ(t) = F
(
xt, u

{1}
t , . . . , u

{l}
t , dt

)
,

y{1}(t) = H{1}
(
xt, u

{1}
t , . . . , u

{l}
t , dt

)
,

. . .

y{r}(t) = H{r}
(
xt, u

{1}
t , . . . , u

{l}
t , dt

)
,

(5)

Here x is the state, u{i}, i ∈ {1, . . . , l} are the
inputs, y{j}, j ∈ {1, . . . , r} are the outputs, and
d(·) are the perturbations that are elements of the
set of admissible perturbations D. It is assumed
that both F and H are continuous operators in
xt, ut, and dt. In particular, this guarantees the
existence and uniqueness of solutions as well as
continuous dependence of the solutions in xt, ut .

The following definition presents a version of the
notion of input-to-output stability specified for
multi-input multi-output systems of FDE. A close
definition of input-to-state stability (ISS) for FDE
was introduced in (Teel, 1998).

Definition 1. System of the form (5) is said to
be input-to-output stable (IOS) at the moment
t = 0 with td ≥ 0, IOS gains γ{ij} ∈ K,
i ∈ {1, . . . , l}, j ∈ {1, . . . , r}, and restriction(
∆x, ∆{1}

u , . . . , ∆{l}
u

)
∈ Rl+1

>0 , if the conditions

sup
t∈[−td,0]

|x(t)| ≤ ∆x, and sup
t≥−td

∣∣u{i}(t)
∣∣ ≤ ∆{i}

u ,

i ∈ {1, . . . , l} imply that the solutions of (5) are
well-defined for all t ∈ [0, +∞), and the following
two properties hold:

i) uniform boundedness: there exists a function
β ∈ K∞ and C ≥ 0 such that

sup
t≥0

∣∣∣y{j}(t)
∣∣∣ ≤ max





β

(
sup

s∈[−td,0]

|x(s)|

)
,

γ{1j}
(

sup
s≥−td

∣∣∣u{1}(s)
∣∣∣
)

,

. . . ,

γ{lj}
(

sup
s≥−td

∣∣∣u{l}(s)
∣∣∣
)

, C





for all j ∈ {1, . . . , r};

ii) convergence:

lim sup
t→∞

∣∣∣y{j}(t)
∣∣∣ ≤ max





γ{1j}
(

lim sup
t→∞

∣∣∣u{1}(t)
∣∣∣
)

,

. . . ,

γ{lj}
(

lim sup
t→∞

∣∣∣u{l}(t)
∣∣∣
)





for all j ∈ {1, . . . , r}.

In this case, a function γ{i,j} ∈ K, where i ∈
{1, . . . , l}, j ∈ {1, . . . , r}, is called the IOS gain
from u{i} to y{j}. •

The following version of the IOS small gain the-
orem is our main tool in establishing the results
presented in the next section.



Theorem 1. Consider two systems of ordinary
differential equations of the following form

Σ1 :





ẋ1 = F1 (x1, u1, w1) ,

y
{1}
1 = H

{1}
1 (x1, u1, w1) ,

y
{2}
1 = H

{2}
1 (x1, u1, w1) ,

(6)

where td = td1 ≥ 0, and

Σ2 :





ẋ2 = F2

(
x2, u

{1}
2 , u

{2}
2 , w2, d

)
,

y2 = H2

(
x2, u

{1}
2 , u

{2}
2 , w2, d

)
,

(7)

where d(t) is a Lebesgue measurable function that
represents disturbances. Suppose τf , τb : R → R+

satisfy Assumption 1. Further, suppose the inputs
and outputs of the systems Σ1, Σ2 satisfy the
following constraints

u1(t) ≡ u2(t) ≡ 0 for t < 0, (8)

and
|u1(t)| ≤ |y2(t − τb(t))| ,
∣∣∣u{j}

2 (t)
∣∣∣ ≤

∣∣∣y{j}
1 (t − τf (t))

∣∣∣
(9)

for t ≥ 0, j ∈ {1, 2}. Suppose also

i) subsystem Σ1 is input-to-output stable, i.e.,
there exist β

{1}
1 , β

{2}
1 ∈ K∞, γ

{1,j}
1u , γ

{j}
1w ∈ K, and

C
{j}
1 ≥ 0, j = 1, 2, such that for all t0 ∈ R the

following hold:

sup
t≥t0

∣∣∣y{1}
1 (t)

∣∣∣ ≤ max





β
{1}
1 (|x1(t0)|) ,

γ
{1,1}
1u

(
sup
t≥t0

|u1(t)|
)

,

γ
{1}
1w

(
sup
t≥t0

|w1(t)|
)

, C
{1}
1





,

sup
t≥t0

∣∣∣y{2}
1 (t)

∣∣∣ ≤ max





β
{2}
1 (|x1(t0)|) ,

γ
{1,2}
1u

(
sup
t≥t0

|u1(t)|
)

,

γ
{2}
1w

(
sup
t≥t0

|w1(t)|
)

, C
{2}
1





,

lim sup
t→∞

∣∣∣y{1}
1 (t)

∣∣∣ ≤ max





γ
{1,1}
1u

(
lim sup

t→∞
|u1(t)|

)
,

γ
{1}
1w

(
lim sup

t→∞
|w1(t)|

)





,

lim sup
t→∞

∣∣∣y{2}
1 (t)

∣∣∣ ≤ max





γ
{1,2}
1u

(
lim sup

t→∞
|u1(t)|

)
,

γ
{2}
1w

(
lim sup

t→∞
|w1(t)|

)





;

ii) subsystem Σ2 is input-to-output stable, i.e.,
there exist β2 ∈ K∞, γ

{j,1}
2u , γ2w ∈ K, j = 1, 2,

and C2 ≥ 0, such that for all t0 ∈ R:

sup
t≥t0

|y2(t)| ≤ max





β2 (|x2(t0)|) ,

γ
{1,1}
2u

(
sup
t≥t0

∣∣∣u{1}
2 (t)

∣∣∣
)

,

γ
{2,1}
2u

(
sup
t≥t0

∣∣∣u{2}
2 (t)

∣∣∣
)

,

γ2w

(
sup
t≥t0

|w2(t)|
)

, C2





,

lim sup
t→∞

|y2(t)| ≤ max





γ
{1,1}
2u

(
lim sup

t→∞
|u{1}

2 (t)|
)

,

γ
{2,1}
2u

(
lim sup

t→∞
|u{2}

2 (t)|
)

,

γ2w

(
lim sup

t→∞
|w2(t)|

)





;

iii) there exists ∆s > 0 such that the following
small gain condition holds

γ
{j,1}
2u ◦ γ

{1,j}
1u (s) < s

for all s ∈ (0, ∆s), j ∈ {1, 2}.

Suppose ∆x1, ∆x2, ∆w1, ∆w2 > 0 satisfy

∆s > ∆∗
s := max





γ
{1,1}
2u ◦ β

{1}
1 (∆x1) ,

γ
{2,1}
2u ◦ β

{2}
1 (∆x1) ,

β2 (∆x2) , γ
{1,1}
2u

(
C

{1}
1

)

γ
{1,1}
2u ◦ γ

{1}
1w (∆w1) ,

γ
{2,1}
2u ◦ γ

{2}
1w (∆w1) ,

γ2w (∆w2) ,

γ
{2,1}
2u

(
C

{2}
1

)
, C2





.

Then the system (6), (7) subject to constraints
(8), (9), with inputs w1, w2, and outputs y

{1}
1 ,

y
{2}
1 , y2, being considered as a system of FDE, is

input-to-output stable at the moment t = 0 in the
sense of definition 1 with

td = max
{

τf (0) + τb (−τf (0)) ,

τb(0) + τf (−τb(0))

}
,

and restriction (∆x1, ∆x2, ∆w1, ∆w2).

4. MAIN RESULT

To stabilize the force reflecting telerobotic system
with time-varying communication delay, we pro-
pose the following local controllers

um = −Hm (qm) Λmq̇m

−Cm (qm, q̇m) Λmqm

+Gm (qm) − Km (q̇m + Λmqm) ,

(10)

us = Hs (qs)
(
Λ
(
ˆ̇qm − q̇s

))

+Cs (qs, q̇s)
(

ˆ̇qm − Λ (qs − q̂m)
)

+Gs (qs) − Ks

(
q̇s − ˆ̇qm + Λ (qs − q̂m)

)
,

(11)

where Λm = ΛT
m > 0, Λs = ΛT

s > 0, Km = KT
m >

0, Ks = KT
s > 0 are symmetric positive definite

matrices that can be chosen by the designer.

Following the idea introduced in (Polushin and
Marquez, 2003a, b), we will consider the force
reflecting telerobotic system with communication
delay (1), (2), (3), (4), (10), (11) as a system of
functional-differential equations (5). A state of the



telerobotic system at time t ∈ R can be chosen as
follows

xt :=
(
qT
m, q̇T

m, q̃T
s , ˜̇qT

s

)T
t

, (12)

where q̃s = qs − q̂m, and ˜̇qs = q̇s − ˆ̇qm, and,
as before, we use the notation xt(s) := x (t − s),
s ≥ 0. On the other hand, consider the following
set of inputs

u{1} = Fh, u{2} = fext, (13)

and the following set of outputs

y{1} =
(
qT
m, q̇T

m

)T
, y{2} = q̈m,

y{3} =
(
q̃T
s , ˜̇qT

s

)T
, y{4} = fe,

(14)

of the closed-loop telerobotic system. We will
show that the closed-loop telerobotic system with
the above defined state and outer signals (input
and output) can be made input-to-output stable
in the sense of definition 1 by an appropriate
choice of the matrices Λm, Λs, Km, and Ks.
Below, given a symmetric matrix A, it’s mini-
mal (maximal) eigenvalue is denoted by λmin (A)
(λmax (A)). Our main result can be formulated as
follows:

Theorem 2. Consider the controlled force-reflecting
telerobotic system (1), (2), (3), (4), (10), (11)
with state (12), inputs (13), and outputs (14).
Suppose τf (·), τb(·) are time-varying communica-
tion delays satisfying the Assumption 1. Suppose
also that the dynamics of the environment sat-
isfy Assumption 2. Then, given ∆x, ∆{1}

u , ∆{2}
u ∈

(0, +∞), γ0 > 0, there exist λm, λs ≥ 0 such
that for any Λm, Λs satisfying λmin (Λm) ≥ λm,
λmin (Λs) ≥ λs, there exist κm, κs ≥ 0 such that
λmin (Km) ≥ κm, λmin (Ks) ≥ κs implies that
the controlled force-reflecting telerobotic system
is input-to-output stable at t = 0 with

td = max
{

τf (0) + τb (−τf (0)) ,

τb(0) + τf (−τb(0))

}
,

and restriction
(
∆x, ∆{1}

u , ∆{2}
u

)
. Moreover, the

IOS gains γ{13}, γ{23} from inputs u{1}, u{2} to
output y{3} =

(
q̃T
s , ˜̇qT

s

)T
is less than or equal to

γ0.

5. SIMULATIONS

Here we present an example of computer sim-
ulations of the proposed algorithm. Consider a
force-reflecting telerobotic system where both the
master and the slave are two-degrees-of-freedom
manipulators with Hm(q) = Hs(q) ∈ R2×2, where

h11 = (2l1 cos q2 + l2)l2m2 + l21(m1 + m2),
h12 = h21 = l22m2 + l1l2m2 cos q2,

h22 = l22m2,

Cm (q, q̇) = Cs (q, q̇) ∈ R2×2, where

c11 = −l1l2m2 sin(q2)q̇2,

c12 = −l1l2m2 sin(q2) (q̇1 + q̇2) ,

c21 = l1l2m2 sin(q2),
c22 = 0,

and Gm(q) = Gs(q) ∈ R2, where

g1 = g (m2l2 sin(q1 + q2) + (m1 + m2)l1 sin(q1)) ,

g2 = gm2l2 sin(q1 + q2),

m1 = 10, m2 = 5, l1 = 0.7, l2 = 0.5, g = 9.81.
The initial conditions are all zeros, i.e. qm1(0) =
q̇m1(0) = qm2(0) = q̇m2(0) = qs1(0) = q̇s1(0) =
qs2(0) = q̇s2(0) = 0. The forces applied by the
human operator are as follows

Fh1(t) = 80 sin (0.5t) , Fh2(t) = 50 sin t.

The contact with the environment is simulated by
the following simple model: for each joint i = 1, 2,
we have fei = 0, if qi ≤ π/2, and

−fei = K (qi − π/2) if qi > π/2,

where K is stiffness coefficient of the environment.
In the simulations, we put K = 1000. The para-
meters of control law are set as follows: Km = 5 ·I,
Ks = 10 · I, Λm = 5 · I, Λs = 10 · I, where
I ∈ R2×2 is the identity matrix. The communi-
cation channel is modeled by time varying time
delay τf (t) = τb(t) shown in figure 1.
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Fig. 1. Communication delay.

Simulation results are presented in figures 2-5.
In particular, delayed position of the master vs.
position of the slave and the contact force due to
environment for 1st joint are shown in figures 2
and 3. Analogous plots for 2nd joint are given in
figures 4 and 5. We see that these simulations
demonstrate stability as well as good tracking
properties of the proposed algorithm which are
not destroyed by a contact with the environment.

6. CONCLUSIONS

The problem of stabilization of force reflect-
ing teleoperators with time-varying possibly un-
bounded communication delay has been addressed.
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Fig. 2. Trajectories of 1st joints: delayed master
vs. slave.
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Fig. 3. Environmental forces applied to 1st joint
of the slave.
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Fig. 4. Trajectories of 2nd joints: delayed master
vs. slave.

Our interest to this problem is based on the fact
that time-varying communication delays naturally
arise when teleoperation is performed over the In-
ternet. We propose a control scheme that guaran-
tees the stability of the overall telerobotic system
with time varying possibly unbounded communi-
cation delay satisfying a set of technical assump-
tions. Moreover, the proposed scheme guarantees
that the slave tracks the delayed master trajectory
with an error ultimately bounded by an arbitrarily
small constant. The proof of this result is based on
a special version of the IOS small gain theorem.
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Fig. 5. Environmental forces applied to 2nd joint
of the slave.
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