
ANTIWINDUP AND OVERRIDE CONTROL

FOR EXPONENTIALLY UNSTABLE SYSTEMS

WITH ACTUATOR CONSTRAINTS

Adolf Hermann Glattfelder, Walter Schaufelberger

Automatic Control Lab, ETH Zürich, Switzerland,
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Abstract: Control of exponentially unstable plants with an actuator having both
position and rate saturations is investigated. The standard antiwindup technique is
not able to increase the very limited radius of attraction. A novel design technique
based on the override technique is proposed which enlarges the radius of attraction,
such that the actuator working range can be utilized. Copyright c©2005 IFAC.
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1. INTRODUCTION

The closed loop performance of linear control sys-
tems may deteriorate if the actuator constraints
are met. This is the case for asymptotically stable
plants and even more so for exponentially unstable
plants, where the area of attraction can be so
small that even routine deviations may result in
divergent behavior. Therefore constrained control
of exponentially unstable systems has become of
research interest recently, e.g. (Barbu et al., 2002),
(Tarbouriech and Garcia, 2002).
The graphic circle test (Khalil, 2002) is used for
the analysis and design of control loops with sat-
urating static actuators and stable plants with
standard configurable industrial control systems
(Glattfelder and Schaufelberger, 2003).
In this paper these techniques shall be applied
to an exponentially unstable plant controlled by
a dynamic actuator with both stroke and slew
saturations.
The control problem is defined in sect. 2, and a
benchmark case is specified in sect. 3. In sect.
4 the effect of the actuator constraints on the
radius of attraction is investigated for step inputs
on both reference and load. It is shown that the
standard awf structure is not able to enlarge the

radius of attraction significantly here. Therefore
a new approach is proposed and investigated in
sect. 5 which is based on the override technique.
It is shown by stability analysis and with simula-
tions that the radius of attraction is substantially
enlarged, up to the working range of the actuator.

2. THE CONTROL PROBLEM

Consider the control system given in Figure 1.
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Figure 1. The control system with plant P ,
nonlinear actuator A, and controller K

Plant P
The manipulated variable u, the ‘load’ z and the
controlled variable y shall be scalars.
The operating point of P is determined by the
steady state values of reference r and load z,
which require manipulated input values u for



equilibrium. Both r and z are specified on a
bounded interval, such that the resulting u shall
be within ulo < u < uhi, that is within the design
operating range of A.
P is to be linear time invariant and in state space
form, from where y/u = G(s) is derived.
At least one pole of G(s) shall be in the RHP
(yielding the exponentially unstable open-loop
modes), one or more is on the imaginary axis (for
the stable modes), and one or more is in the LHP
(for the asymptotically stable modes).
For simplicity let all state variables x be directly
accessible. Thus no observer is needed for the state
feedback part of K.

Actuator A
Here a typical electro-hydraulic actuator sub-
system is considered, Fig. 2, (Glattfelder and
Schaufelberger, 2003) p.218. The mechanical end
stops of the servomotor piston are at ulo, uhi

(stroke constraints), and vlo, vhi represent the
flow constraints from the pilot servovalve (slew
constraints), and ks is the gain of the P-controller.
This model is embedded in the typical cascade
structure, where the main controller outputs the
position reference uc = rs.
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Figure 2. The actuator subsystem from physical
modelling (top), approximation (bottom)

This model contains two nonlinear elements,
which makes the stability analysis much more
involved than for one nonlinear element. Therefore
an approximate model is proposed here, Fig. 2
(bottom). It is similar to the one used in (Barbu et

al., 2002), but avoids the very high gain used there
and has a single nonlinear element. – Let as = 1.0

Then whi = uhi; wlo = ulo

and
d

dt
uup =

1

τs

whi,
d

dt
udn =

1

τs

wlo (1)

This determines τs and assumes symmetric sat-
uration values. The approximate model is con-
servative with respect to the rate constraint, but
reproduces the position constraint correctly, see
Fig. 4.

Controller K
A standard state feedback is used with an output
integral action and a static antiwindup feedback
(gain ka) acting on its input. w is the output of the
saturation element in Fig. 2, and wlin its input.

uc = −kT x +
1

s

[

k0

τ0

(r − y) + ka(w − wlin)

]

(2)

The feedback gains can be determined by any
linear design method. Here pole assignment to
closed loop bandwidth Ω1 is used with ka := Ω1,
see (Glattfelder and Schaufelberger, 2003) p.282.

3. THE BENCHMARK

Let P represent the inverted pendulum on a slider,
around its upright position and valid for small
inclination angles. The pendulum mass shall be
concentrated at its center of gravity (cg). Denote
the horizontal speed of its cg as x1, the horizontal
displacement between the cg’s of pendulum and
slider as x2 and the horizontal speed of the slider
as x3. The actuator with state x4 and input w
shall exert a horizontal force on the slider. The
load z is a horizontal force at the pendulum
cg. Also the slider mass shall be much smaller
than the pendulum mass. This finally yields as
a suitable model:

x1

w
:=

1

sτ4 + 1

1

s2τ3τ2 − 1

1

sτ1

;
x1

z
:=

1

sτ1

(3)

which shall be used in the sequel. Its poles are
at −1/τ4 from the actuator; at +1/τ2 and −1/τ3

with τ3 = τ2 from the unstable inclination dynam-
ics, and one at the origin. – Further

τ1 := 1.0; τ3 := τ2 := 0.20; τ4 := 0.20 (4)

The actuator saturations are set to

ulo = wlo = −1.0; uhi = whi = +1.0 (5)

The closed loop bandwidth is set to Ω1 := 1.0/τ2.
Pole assignment to (s + Ω1)

5 = 0 yields

k4s = 5(Ω1τ4)

k3s = 10(Ω1τ3)(Ω1τ4) + (τ4/τ2)

k2s = 10(Ω1τ2)(Ω1τ3)(Ω1τ4) + k4s

k1s = 5(Ω1τ1)(Ω1τ2)(Ω1τ3)(Ω1τ4)

k0s = (Ω1τ0)(Ω1τ1)(Ω1τ2)(Ω1τ3)(Ω1τ4) (6)

Then the state feedback is transformed to the
cascade structure Fig. 3., with
- actuator loop r4 → x4,
- inclination feedback r2 → x2, using x3,
- speed control r1 → x1, with integral action x0

k4 = k4s − 1; k3 = k3s/k4s; k2 = k2s/k3s

k1 = k1s/k2s; k0 = k0s/k1s; (7)



r_4

w
w_lin

r_2

r_1

x_4x_3x_2x_1

1
s

x0

wlo to whi

w

x_1

x_2

x_3

x_4

z

plant &
actuator
(approx.)

k3

ka_1

k4

k1k0/T0
k2

Figure 3. Structure of the awf control system

Finally for the awf gain

ka = Ω1 → ka1 = ka/k1s or ka = 0 (8)

Note that the actuator loop bandwidth results
from the overall bandwidth design to Ω1.
For instance Ω1 = 5 yields k4 = 4.0; see Fig.4.
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Figure 4. Step responses r4 → x4 of the actuator
loop with the approximate model

4. THE ANTIWINDUP APPROACH

4.1 Stability Analysis

The plant P and the controller K in Fig. 1
are both not asymptotically stable. Thus the
saturation element must be replaced by a par-
allel arrangement of a unity gain and a dead-
span element with unity gain slopes and break-
points at wlo, whi. Then for the stability test (cf.
(Glattfelder and Schaufelberger, 2003), p.284ff):

∆min =
whi

wlinmax
− whi

(9)

and for the transfer function of the linear subsys-
tem

F + 1 =
1 + ka

1

s

1 + R′ 1

s
G

=
dG

D1

(s + ka) (10)

where dG, D1 denote the characteristic polynomi-
als of the plant and of the linear closed loop.

.

As will be shown next, the unstable root factor
produces a strong phase shift of the Nyquist
contour F + 1 into the LHP, which indicates a
substantial reduction of the radius of attraction.
For the benchmark case:

F + 1 =
(s + 1

τ4
) (s2 − 1

τ3τ2
) s2

(s + Ω1)5
s + ka

s
(11)

where (1/τ3) = (1/τ2) = (1/τ4) := Ω1, and if
the awf-gain is set to: ka := Ω1, then finally

F + 1 =
s

s + Ω1

s − Ω1

s + Ω1

(12)

Fig. 5 shows the corresponding Nyquist contour.
The graphic stability test then requires the dis-
tance −∆min < −0.5. Using the definition of ∆
above, the maximum allowable deviations wlin

are restricted to approximately three times the
operating range whi.
For the case with no awf, set ka = 0.:

F + 1 =
s

s + Ω1

s − Ω1

s + Ω1

s

s + Ω1

(13)

From the corresponding plot in Fig. 5 the shape
of the Nyquist contour does not change signifi-
cantly. Therefore the stability properties will not
be significantly different.

In Fig. 5 the Nyquist contours are also drawn for
the case where the unstable zero in dG is mirrored
into the LHP, that is for the corresponding stable
plant.

F + 1 =
s

s + Ω1

and
s2

(s + Ω1)2
(14)

Note the substantial difference in stability proper-
ties. The maximum allowable wlin tends to ∞ for
the ‘awf ON’ case and to about 10 for ‘awf OFF’.

Note that the effect of the actuator rate constraint
τ4 on stability properties may be discussed as a
generalization of this special case. However this
shall not be pursued further here.
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Figure 5. For the circle test: Nyquist contours for
the antiwindup approach

4.2 Transient Responses

Fig. 6 illustrates the responses of the system for
the maximum stabilizable r1 step.
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Figure 6. Response to the maximum stabilizable
reference step

From simulations where reference steps were in-
creased to the maximum stabilizable size r1:

r1max
= 0.7190 for ka = 0

and r1max
= 0.7335 for ka = Ω1 (15)

This documents the weak influence of the awf gain
on the radius of attraction.

Next the stability border from the simulation
is correlated with the stability border from the
graphic test Fig. 5, i.e. for ka := Ω1. Using the
off-axis circle test (or equivalently the Popov test),
∆min is read from Fig.5:

∆StabT = Re{F (jω) + 1} at Im{F (jω)} = 0(16)

And from wlin(t) in the simulation Fig. 6, wlinmax

is read as 1.22/0.40 = 3.05 and this is converted
to ∆Simul.

∆StabT = 0.50 vs. ∆Simul = 0.49 (17)

Thus the predictions from the stability test are
nicely confirmed by the simulations.

Fig. 7 shows the response to the maximum admis-
sible load step size for ka := Ω1, from simulations:

zmax = 0.575 (18)
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Figure 7. Response to the maximum stabilizable
load step

To summarize, only a small part of the static
working range of the actuator is utilizable. How
this can be improved shall be shown next.

5. THE OVERRIDE APPROACH

5.1 The Basic Idea

Consider again the control structure, Fig.3.
If wlin is driven beyond its saturation values, then
the negative feedback through k3, k2 is inacti-
vated, and thus the exponentially unstable incli-
nation dynamics can no longer be stabilized. And
this in turn is caused by excessive reference values
r2(t) which are generated by the r1-controller.
Therefore, in the override framework, wlin may be
seen as a secondary output variable yc, which has
to be constrained to an operating range

rclo
≤ yc ≤ rchi

(19)

with rclo
= wlo + ∆c; and rchi

= whi − ∆c

where e.g. ∆c := 0.05 1

And the constraints on yc are implemented by
overriding feedbacks on wlin through Min-Max-
Selectors, Fig.8.
In contrast to the ‘saturation and awf’-approach
in sect. 4, now one of the inclination control loops
is always closed and thus will see to stabilizing the
exponentially unstable dynamics.

1 This is a compromise between loosing actuation operat-

ing range and inadvertently having the stabilizing feedback

inactivated by the saturations
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Figure 8. Structure of the override control system

In Fig. 8 these inclination feedbacks may be seen
as ‘slave’ controllers in a cascade structure. The
‘master’ controller for the main variable x1 is of
PI(awf)-type, and for the override variable yc it is
of I(awf)-type. The integral actions are inserted
to suppress steady state offsets on e1 and ec.
Then awf gains ka1, kaC are needed to insure
proper tracking. Two fully separate paths have
been chosen here also for the ‘slave’ controllers
(other structures are possible).

5.2 Designing the Override Loop

The x1-loop design is the same as in sect. 4.
For the override control loop the state feedback
for the inclination stabilization is designed first
and then the I(awf) feedback.
Denote the output of the integral action in the yc

loop as uiC
, see Fig. 8. Then

Gc =
wlin

uiC

=

[

1 +
1

1 + sτ4

k4c +

+
(sτ2k3c + k2c)

(1 + sτ4)(sτ3 + 1)(sτ2 − 1)

]

−1

=
(1 + sτ4)(sτ3 + 1)(sτ2 − 1)

d3C

with

d3C
= s3τ4τ3τ2 + s2τ3τ2(k4c + 1)

+sτ2(k3c − (τ4/τ2) + (k2c − (k4c + 1))

→ Gc =− (1 − sτ2)
n3C

d3C

(20)

where d3C
is the characteristic polynomial of the

closed loops for actuator and inclination (which is

.

asymptotically stable by design), and n3C
con-

tains all zeros not in the RHP. Thus Gc is an
‘inverse-unstable’ plant with a negative sign.
To implement the override action, the nega-
tive sign requires inverted signs on its I(awf)-
controller, and ‘crossing-over’ the uic

’s upstream
of the selectors, see (Glattfelder and Schaufel-
berger, 2003), p.377.
Furthermore general design rules recommend for
the inverse-unstable plant dynamics an integrat-
ing output feedback, see Fig. 8,

uiChi;lo
= − echi;lo

k0 C

sτ0

=
k0 C

sτ0

(yc − uchi;lo
) (21)

where τ0 := τ2, and also recommend to select the
closed loop bandwidth at ΩC ≈ (1/τ2)

Then from (s + ΩC)4 = 0

k0c = (ΩCτ0)(ΩCτ2)(ΩCτ3)(ΩCτ4)

k4c = 4(ΩCτ4) + k0c(τ4/τ0)

k3c = 6(ΩCτ3)(ΩCτ4) + (τ4/τ2)k0c(τ3/τ0)

k2c = 4(ΩCτ2)(ΩCτ3)(ΩCτ4) − k0c(τ4/τ0) + k4c(22)

→ (for the cascaded structure, Fig.8)

k4 C = k4c − 1; k3 C = k3c/k4c

k2 C = k2c/k3c; k0 C = k0c/k2c; ka C = Ωc/k2c(23)

5.3 Nonlinear Stability Properties

The nonlinearity in Fig. 8 has three inputs. This is
equivalent to the one-input deadspan nonlinearity
(Glattfelder and Schaufelberger, 2003), p. 114ff,
producing the canonical structure required for the
stability test. Then for the linear subsystem



F + 1 =
1 + ka1

s

1 + R′

1
1

s
G1

·
1 + R′

c
1

s
Gc

1 + kaC

s

= (24)

dG1
· s

(s + Ω1)N1+1

s + ka1

s

(s + ΩC)NC+1

dGC
· s

s

s + kaC

(25)

where from the basic idea of sect. 5.1, the charac-
teristic open loop polynomial dGC

of degree NC

contains the exponentially unstable poles of the
plant, and dG1

of degree N1 stands for the series
connection of dGC

with additional but stable dy-
namics dG

+

1

of degree N1 − NC .

Thus by construction of the override system, the
exponentially unstable poles (zeros of dGC

) always
cancel in F + 1, that is

F + 1 = dG
+

1

(s + ΩC)NC+1

(s + Ω1)N1+1
·

s + ka1

s + kaC

(26)

For the benchmark example N1 = 4; NC = 3
and for compensating awf: kai = Ωi; i = 1, C

dG
+

1

= s; dGC
= (s +

1

τ4

)(s2 −
1

τ3τ2

)

F + 1→
s

(s + Ω1)

(s + ΩC)3

(s + Ω1)3
(27)

and as typically ΩC :≈ Ω1, the Nyquist contour
of F + 1 will now avoid the LHP.
Fig. 9 illustrates this for ΩCτ2 = [1.3, 1.2, 1.1]
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Figure 9. Nyquist contours for the override system

This indicates a very large radius of attraction,
allowing large inputs wlinmax

and thus either large
reference steps r1 or, for step loads, resulting
steady state offsets w close to the operating con-
straint setpoints on wlin. Fig. 10 confirms this by
the response to a large reference step r1 = 2.0
(top) and to a load step z1 to 0.90 (bottom), with
ΩcT2 = 1.20, and with constraint setpoints at
whi = 0.970; wlo = −0.970.

To summarize, the region of attraction for refer-
ence steps has been extended from 0.7335 to near-
infinity, and for load steps from 0.575 up to 0.90,
i.e. close to the actuator working range.
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Figure 10. Step responses for the override system

6. SUMMARY

The novel application of the override concept on
an exponentially unstable system has enlarged its
radius of attraction up to what practical applica-
tions would require.
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