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Abstract: This paper studies the state agreement problem with the objective to
ensure the asymptotic coincidence of all states of multiple nonlinear dynamical
systems. The coupling structure of such systems is characterized in qualitative
terms by means of a suitably defined directed graph. Under a suitable sub-
tangentiality assumption on the vector fields of the systems, we obtain a necessary
and sufficient graphical condition for their state agreement via nonsmooth analysis,
with the invariance principle playing a central role. As applications, we study
synchronization of coupled Kuramoto oscillators and synthesis of a rendezvous
controller for a multi-agent system. Copyright c©2005 IFAC
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1. INTRODUCTION

Recent years have seen an increasingly broad
range of studies on the state agreement problem,
which goes back at least to (DeGroot, 1974). In
this problem, the objective is to ensure the asymp-
totic coincidence of all or some states of multiple
dynamical systems via distributed interactions.
This is also referred to as the synchronization
problem, see (Pogromsky et al., 2002) and refer-
ences therein.

In (Ando et al., 1999), distributed algorithms were
presented with the objective of getting a group of
autonomous synchronous robots to congregate at
a common location. These algorithms have been
extended to various synchronous and asynchro-
nous stop-and-go strategies in (Lin et al., 2003),
and (Cortes et al., 2004). The work of (Jadbabaie
et al., 2003) on the agreement problem attracted
the attention of many researchers. For example,
represented by a linear continuous-time system, a
group of agents were shown in (Lin et al., 2004)
to globally asymptotically converge to a single
point under certain graphical conditions using
the tool of the graph Laplacian. Meanwhile, with

this model, the problem of information consen-
sus among multiple agents under fixed or dy-
namic topology was addressed by the same tool
in (Beard and Stepanyan, 2003) and (Saber and
Murray, 2003). Moreover, (Lin et al., 2005) inves-
tigated the agreement problem of multiple unicy-
cles, and Moreau studied the stability of linear
continuous-time distributed consensus algorithms
(Moreau, 2004) and nonlinear discrete-time dis-
tributed consensus algorithms (Moreau, 2005). In
the latter work, assuming that the vector fields
of the agents satisfy a certain convexity prop-
erty, Moreau obtained necessary and sufficient
graphical conditions for agreement with time-
dependent graph topology. In a different context,
multiple oscillators are coupled by some type of
connection and the goal is synchronization (e.g.,
(Strogatz, 2000), (Jadbabaie et al., 2004)).

As a natural extension to our previous works (Lin
et al., 2004) (Lin et al., 2005), and inspired by the
work of Moreau (Moreau, 2005), here we study
the state agreement problem of continuous time
nonlinear interconnected systems, which can de-
scribe a number of networks of coupled dynamical
systems. The coupling structure of such systems



is usefully characterized in qualitative terms by
means of a suitably defined static digraph, which
is called the interaction digraph in the present pa-
per. However, for such systems, the graph Lapla-
cian alone cannot capture the nature of the sys-
tem. So we would like, from the perspective of
nonlinear dynamics, to understand how a dynamic
network of interacting systems will behave collec-
tively, given their individual dynamics and cou-
pling architecture.

The state agreement problem turns out to be
equivalent to asymptotic stability with respect to
a specified set. Assuming that the systems’ vector
fields satisfy a certain sub-tangentiality condition,
we prove that the interconnected system is glob-
ally asymptotically stable with respect to this set
if and only if the interaction digraph is quasi
strongly connected. Our technical approach relies
on nonsmooth analysis involving the Dini deriv-
ative and with the invariance principle playing a
central role, which is different from that for the
linear cases in the literature that rely on algebraic
graph theory; it is also different from the convexity
argument in (Moreau, 2005).

Finally, as applications, we apply our result to the
synchronization problem of the Kuramoto model
of coupled nonlinear oscillators and to controller
design to solve the rendezvous problem in multi-
agent systems.

Several proofs are omitted due to pagelength
requirements.

2. PRELIMINARIES

2.1 Convex Set and Cone

We introduce basic concepts, notations and some
properties regarding convex set and cone.

The convex hull of S ⊂ R
m is the smallest convex

set containing S. The convex hull of a finite set
of points x1, . . . , xn ∈ R

m is a polytope and is
denoted by co{x1, . . . , xn}.

Consider any norm ‖·‖ in R
m. For each nonempty

subset S of R
m and each x ∈ R

m, we denote the
distance of x from S by ‖x‖S := inf

y∈S
‖x− y‖.

A set K ⊂ R
m is a cone if λx ∈ K when x ∈ K

and λ > 0. Let S ⊂ R
m be a closed convex set

and x ∈ S. The tangent cone (often referred to as
contingent cone) to S at x is the set

T (x,S) =

{
y ∈ R

m : lim inf
λ→0

‖x+ λy‖S
λ

= 0

}

and the normal cone to S at x is

N (x,S) = {y∗ | 〈y, y∗〉 ≤ 0, ∀y ∈ T (x,S)}.

Note that if x is in the interior of S, then
T (x,S) = R

m. Thus the set T (x,S) is non-trivial
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Fig. 1. Tangent cones are obtained by translation
of “T (x1,S)” and “T (x2,S)” to the origin.

only on the boundary of S. In particular, if S
contains only one point, x, then T (x,S) = {0}. In
geometric terms (see Fig. 1), the tangent cone for
x ∈ ∂S is a cone having center at the origin and
which contains all the vectors whose directions
point from x ‘inside’ (or they are ‘tangent to’)
the set S.

Lemma 1. (Aubin, 1991) Let S1,S2 be closed con-
vex sets in R

m. If x ∈ S1 ⊂ S2, then T (x,S1) ⊂
T (x,S2) and N (x,S2) ⊂ N (x,S1).

2.2 Directed Graph

We review some selected notions in graph theory
and present a property of a directed graph.

For a directed graph (digraph for short) G =
(V, E), where V = {v1, . . . , vn} is the set of nodes
and E is the set of arcs, if there is a path in G from
one node vi to another node vj , then vj is said to
be reachable from vi, written vi → vj . Note that
every node of a digraph is reachable from itself.

A node v from which every node of the digraph is
reachable is called a centre of the digraph.

A digraph is said to be quasi strongly connected
(QSC) (called arbitrated in (Even, 1979)) if for
every two nodes vi and vj there is a node v from
which vi and vj are reachable.

A digraph is said to be fully connected if for every
two nodes vi and vj there is an arc from vi to vj .

Lemma 2. (Berge and Ghouila-Houri, 1965) A
digraph is QSC if and only if it has a centre.

2.3 Dini Derivative and Invariance Principle

The following is a brief introduction to the Dini
derivative and LaSalle’s invariance principle.

For the autonomous system

ẋ = f(x), (1)

we assume only that f : D −→ R
m is continuous,

where D is an open subset of R
m. With only

continuity, uniqueness of solutions is not assured.



Let x0 be a point of D. The initial time will always
be chosen equal to 0. A non-continuable solution
with x(0) = x0 will be written x : (α, ω) → R

m,
where α ≤ 0 ≤ ω, and we shall write J+ = [0, ω).

Let V (x) : D → R be locally Lipschitz. The upper
Dini derivative of V along the trajectory of (1) is

D+V (x(t)) = lim sup
τ→0+

V (x(t+ τ))− V (x(t))

τ
.

Then we have the following property.

Lemma 3. (Danskin, 1966) Let I0 = {1, 2, . . . , n}
and suppose for each i ∈ I0, Vi(x) : D → R is of
class C1. Let V (x) = max

i∈I0

Vi(x). Then

(a) V is locally Lipschitz;
(b) D+V (x(t)) = max

i∈I(x(t))
V̇i(x(t)), where I(x) =

{i ∈ I0 : Vi(x) = V (x)}.

The positive limit set of a solution x(t) will be de-
noted Λ+(x0). The following celebrated theorem
is LaSalle’s invariance principle.

Theorem 1. (Rouche et al., 1975) Let x be a so-
lution of (1) and V : D → R a locally Lipschitz
function such that D+V (x) ≤ 0 on x(J+). Then
Λ+(x0) ∩ D is contained in the union of all solu-
tions that remain in X = {x ∈ D : D+V (x) = 0}
on their maximal intervals of definition.

3. THE STATE AGREEMENT PROBLEM

Consider a nonlinear interconnected large-scale
system which is composed of n subsystems with
the index set I0 = {1, 2, . . . , n} and is represented
by the equations of the form

ẋ1 = f1(x1, . . . , xn),
...
ẋn = fn(x1, . . . , xn),

(2)

where xi ∈ R
m, i ∈ I0, or in vector form

ẋ = f(x), (3)

where x ∈ R
mn. Associate to this system a

digraph describing the coupling structure of the
n subsystems.

Definition 1. An interaction digraph G = (V, E)
consists of

• a finite set V of n nodes, each node modeling
a subsystem;

• an arc set E representing the links between
subsystems. An arc from node j to node i
indicates that subsystem j is a neighbor of
subsystem i in the sense that fi depends on
xj , i.e., there exist x1j , x

2
j ∈ R

m such that

fi(x1, . . . , x
1
j , . . . , xn) 6= fi(x1, . . . , x

2
j , . . . , xn).

The set of neighbors of node i is denoted Ni.
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Let Ci = co{xi, xj : j ∈ Ni} be the polytope
formed by the states of subsystem i and its neigh-
bors. Now some properties of the vector field are
assumed for each i ∈ I0:

A1. fi is continuous on R
mn;

A2. for all x ∈ R
mn, fi(x) ∈ T (xi, Ci), but

fi(x) 6= 0 if Ci is not a singleton and xi is its
vertex.

Fig. 2 illustrates two example situations of A2.

Next are some definitions of stability (asymptoti-
cal stability) with respect to a set.

Definition 2. Let Ω ⊂ R
nm be a closed, invariant

set for the system (2) (it is emphasized that Ω is
not required to be bounded). Then with respect
to Ω, the system (2) is called

(1) stable if ∀ε > 0, ∃δ > 0 such that

‖x0‖Ω ≤ δ =⇒ (∀t ≥ 0) ‖x(t, x0)‖Ω ≤ ε;

(2) globally asymptotically stable (GAS) if it is
stable and, ∀x0 ∈ R

mn, lim
t→∞

‖x(t, x0)‖Ω = 0.

In what follows, let 1 = [1, . . . , 1]T ∈ R
n and

Ω = {x ∈ R
mn | x = x̄ ⊗ 1, x̄ ∈ R

m}. It can be
easily checked that Ω is a closed invariant set for
(2). Then state agreement is precisely asymptotic
stability of the system (2) with respect to Ω.

The first result is stability of the interconnected
system (2) without needing any property of the
interaction digraph.

Theorem 2. The interconnected system (2) is sta-
ble with respect to Ω.

The second result shows the relevance of the
coupling structure to global asymptotical stability
with respect to Ω.

Theorem 3. The interconnected system (2) is
GAS with respect to Ω if and only if the inter-
action digraph G is QSC.

Sketch of Proof: (Sufficiency) Consider an
arbitrary x0 ∈ R

mn and let x(t) be a solution of
(2) defined on the maximal interval [0, ω) ⊆ [0,∞)
with x(0) = x0. Such a solution exists by Peano’s
Theorem.
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Fix a point a ∈ R
m and define

V a
i (x) =

1

2
‖xi − a‖2, V a(x) = max

i∈I0

V a
i (x).

Define I(x) = {i ∈ I0 : V a
i (x) = V a(x)}, the

set of indices where the maximum is reached. By
Lemma 3, V a is locally Lipschitz and its Dini
derivative along the solution x(t) is given by

D+V a(x(t)) = max
i∈I(x(t))

V̇ a
i (x(t)).

Define Ba(x) = {y ∈ R
m : ‖y − a‖2 ≤ 2V a(x)}.

Then Ci ⊂ Ba(x) (see Fig. 3). It follows that, for
each i ∈ I(x),

V̇ a
i (x(t)) = LfV

a
i (x) = (xi − a)T fi(x) ≤ 0

since (xi − a) ∈ N (xi,Ba(x)), the normal cone,
and fi(x) ∈ T (xi, Ci) ⊂ T (xi,Ba(x)) by assump-
tion A2 and Lemma 1. Hence, D+V a(x(t)) ≤ 0.
Thus V a(x(t)) ≤ V a(x(0)) for all t ∈ [0, ω)
and x(t) is bounded. By properties of limit sets
(Appendix III in (Rouche et al., 1975)), it follows
that the positive limit set Λ+(x0) is nonempty,
compact, and connected. Furthermore, ω = ∞
and x(t)→ Λ+(x0) as t→∞.

Furthermore, by Theorem 1, Λ+(x0) ⊂M, where
M is the union of all solutions that remain in
Xa = {x ∈ R

mn : D+V a(x) = 0}. This holds
for any a ∈ R

m. Choose any other two arbitrary
points b, c ∈ R

m. Then Λ+(x0) ⊂M′, too, where
M′ is the union of all solutions that remain in
Xb ∩ Xc.

Next, it can be shown that M′ ⊂ Ω. Thus, the
solution x(t) → Ω as t → ∞. Together with
stability given in Theorem 2, global asymptotical
stability follows.

(Necessity) To prove the contrapositive form, as-
sume that G is not QSC, that is, there are two
nodes i∗ and j∗ such that for any node k, either
i∗ or j∗ is not reachable from k. Let V1 be the
subset of nodes from which i∗ is reachable and V2
be the subset of nodes from which j∗ is reachable.
Obviously, V1 and V2 are disjoint. Moreover, for
each node i ∈ V1 (resp. V2), the set of neighbors
of node i is a subset of V1 (resp. V2).

Choose any z1, z2 ∈ R
m such that z1 6= z2, and

pick initial conditions

xi(0) =

{
z1, ∀ i ∈ V1,
z2, ∀ i ∈ V2.

Then by assumption A2,

xi(t) =

{
z1, ∀ i ∈ V1,
z2, ∀ i ∈ V2,

∀ t ≥ 0.

This proves that the system is not GAS with
respect to Ω. ¥

Remark 1. For the interconnected system (2),
suppose the condition in A2 does not hold for
all x ∈ R

mn, but instead it holds for all x in a
set D ⊂ R

mn which contains Ω and is positively
invariant for the system (2). Then the intercon-
nected system (2) is asymptotically stable with
respect to Ω for all initial states in D if and only
if the interaction digraph is QSC.

4. APPLICATIONS

In this section, we discuss two illustrative exam-
ples: synchronization of the Kuramoto model of
coupled nonlinear oscillators; control synthesis for
the rendezvous problem of multi-agent systems.

The Kuramoto model describes the dynamics of a
set of n phase oscillators θi with natural frequen-
cies ωi. More details can be found in (Strogatz,
2000), (Jadbabaie et al., 2004). The time evolution
of the i-th oscillator is given by

θ̇i = ωi +Ki

∑

j∈Ni

sin(θj − θi),

where Ki > 0 is the coupling strength and Ni is
the set of neighbors. The coupling structure can
be general so far, that is, Ni can be an arbitrary
set of other nodes.

For identical coupled oscillators (i.e., ωi = ω,∀i),
suppose initially max

i,j
‖θi(0) − θj(0)‖ < π. Then

we know max
i,j
‖θi(t) − θj(t)‖ < π for all t ≥ 0.

Applying the transformation xi = θi − ωt yields

ẋi = Ki

∑

j∈Ni

sin(xj − xi).

Let D = {x ∈ R
n : max

i,j
‖xi − xj‖ < π}. It

turns out that D is positively invariant for the
system above. Furthermore, it can be easily seen
that assumption A1 is obviously satisfied and that
the condition in A2 holds for all x ∈ D. Thus, by
Remark 1, if and only if the interaction digraph
is QSC, the system above is asymptotically stable
with respect to Ω for all initial states in D, that
is, there exists an x̄ ∈ R such that xi(t) → x̄ for
all i and therefore

θi(t)→ x̄+ ωt, θ̇i(t)→ ω,

achieving synchronization of the oscillators. This
is an extension of Theorem 1 in (Jadbabaie et
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Fig. 5. Synchronization of coupled oscillators.

al., 2004), which assumes the graph is undirected
and the initial state θi(0) ∈ (−π

2 ,
π
2 ) for all i.

Fig. 5 shows simulation plots of three oscillators
with the interaction digraph shown in Fig. 4.
The natural frequency ωi is set to be 3 for all
i, K1,K2,K3 are 1, 0.5, 2 respectively, and the
initial conditions are θ1(0) = 2

3π, θ2(0) = 0,
θ3(0) = −

π
4 .

Next, we turn to control synthesis for the ren-
dezvous problem of multi-agent systems in contin-
uous time. Suppose there are n agents, each hav-
ing the simple kinematic model of velocity control:
ẋi = ui, where xi ∈ R

m is the position of agent
i. Assume that, due to the limited field of view of
its sensor, each agent can sense only the relative
positions of its neighbor agents within radius r.
Letting Ni(x) denote the set of neighbors of agent
i, we thus have that {yij = xj − xi : j ∈ Ni(x)}
is the information available to agent i.

The rendezvous problem is to design local distrib-
uted control laws

ui = ui (yij : j ∈ Ni(x))

such that

lim
t→∞

x1(t) = · · · = lim
t→∞

xn(t) = x̄ for some x̄ ∈ R
m.

The controller above naturally induces an interac-
tion digraph G(x), which depends on the state x
and may be dynamic as the system evolves. Gen-
erally, if some agents are initialized so far away
from the rest that they never acquire information
from them, then the rendezvous problem can not
be solved. Mathematically, this corresponds to
the situation where G(x0) is not QSC. So it is
natural to assume that G(x0) is QSC. Moreover,
we wish the control law ui to be devised such that
the interaction digraph G(x(t)) does not lose this
property in the future, even though the control
law may cause changes in G(x(t)). Intuitively,
ui should make the maximum distance between
agent i and its neighbor agents non-increasing.

Let Ii(x) denote the set of neighbor agents j ∈
Ni(x) that have maximum distance from agent i.

Proposition 1. Suppose G(x0) is QSC. If, for all i,
ui satisfies the condition

(∀x) max
j∈Ii(x)

(xi − xj)
Tui ≤ 0, (4)

then G(x(t)) is QSC for all t ≥ 0.

Proposition 2. Suppose G(x0) is QSC. If ui satis-
fies condition (4) and assumptions A1, A2, then
the agents asymptotically rendezvous.

Proof: If G(x0) is fully connected, then it is fixed
for all time t ≥ 0, since no arc will be dropped,
by Proposition 1, and no arc can be added. Then
the conclusion follows from Theorem 3.

If instead G(x0) is not fully connected, then the
interaction digraph G(x(t)), t ≥ 0 is dynamic
and switches for a finite number of times. To
prove this, suppose by contradiction that for all
t ≥ 0, G(x(t)) = G(x0). Then by Theorem 3,
all the agents converge to a common position.
So G(x(t)) will become fully connected at some
time t, which contradicts the assumption that
G(x(t)) = G(x0) is not fully connected. Hence,
there is a t1 ≥ 0 such that G(x(t1)) has more arcs
than G(x0) because no arcs will be dropped by
Proposition 1. Repeating this argument a finite
number of times eventually leads to the existence
of ti such that G(x(ti)) is fully connected, and
thus, it is fixed after ti. Then the conclusion
follows from Theorem 3. ¥

The control law given next is based on the algo-
rithm first proposed in (Ando et al., 1999).

Proposition 3. A possible choice of ui satisfying
condition (4) and assumptions A1, A2 is ui =
e(0, yij : j ∈ Ni(x)), the Euclidean center of the
set Z = {0, yij , j ∈ Ni(x)}.

Proof: The Euclidean center of the set Z is
the unique point w that minimizes the function
max
z∈Z

‖w− z‖. Furthermore, it can be easily shown

that it lies in the polytope C̃i = co{0, yij , j ∈
Ni(x)} but not at its vertices if the polytope
is not a singleton. Thus, by Maximum Theorem
((Sundaram, 1996)), the function e(·) is continu-
ous and hence ui satisfies assumption A1.

Next, e(·) ∈ C̃i implies e(·) ∈ T (0, C̃i). Also, notice
that Ci = co{xi, xj : j ∈ Ni(x)} is the translation

of C̃i to the point xi. Hence, e(·) ∈ T (xi, Ci). In
addition, if Ci is not a singleton and xi is its vertex,
this means C̃i is not a singleton and 0 is its vertex.
Then by the fact that e(·) lies in C̃i but not at its
vertices, it follows that ui = e(·) 6= 0. Thus ui

satisfies assumption A2.

Finally, ui satisfies condition (4). This can be seen
from geometry. We show the case when m = 2
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and it is same when m > 2. If ui = 0, then it
trivially satisfies (4). If ui 6= 0, then the picture
is as in Fig. 6. The solid circle C1 is the smallest
circle enclosing the points 0 and yij , j ∈ Ni(x).
The dotted circle C2 is centered at the origin
and goes through the intersection points between
C1 and its diameter, which is perpendicular to
ui. We know that if there are some yij in the
closed shaded area, then one of them achieves the
maximal distance from the origin. On the other
hand, there is at least one j ∈ Ni(x) such that yij
is in the closed semicircle of C1, since otherwise it
is not the smallest circle. Hence, yij lies in the
closed shaded area if j ∈ Ii(x). Moreover, the
angle between ui and yij (yij is in the closed
shaded area) is less than π/2. This implies that
max

j∈Ii(x)
(xi − xj)

Tui ≤ 0. ¥

5. CONCLUSION

In this paper, the state agreement problem for
nonlinear continuous-time interconnected systems
with static network architecture is studied. How-
ever, there are many situations where the network
is ad hoc and time-varying. A future topic is the
investigation of the state agreement problem for
switched nonlinear interconnected systems.
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