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Abstract: Idle speed control of a spark ignition engine is studied via a control
invariant approach. A hybrid system describes torque generation at cycle–level.
The continuous–time dynamics is reset at prescribed crankshaft angles. Time–
discretization allows to handle delays in the control loop and constraints on state
and control variables in a simple form by means of a control invariant technique.
The synchronization problem is solved by a robust extension of the same technique.
Controller implements a piecewise–linear state–feedback law. Copyright c©2005
IFAC.
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1. INTRODUCTION

Three main features are shared by idle speed con-
trol (ISC) of spark ignition engines: nonlinearities,
delays in the control loop and & synchronization,
model and disturbance uncertainty. Control ob-
jectives typically include good tracking properties,
disturbance rejection, robustness. In idle speed
mode motor torque is controlled essentially by two
variables, the throttle valve opening angle regu-
lating the amount of air intake into the cylinders,
and the spark ignition advance. Given the narrow
range in which variables must be kept, linearized
models in ISC are generally accepted and widely
used in practice [Hrovat et al., 1997, Yurkovi et al.,
1997]. The open-loop behaviour can be described
in the time–domain or in the crankshaft–angle
domain [Chin et al., 1986, Yurkovi et al., 1997].
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Mathematically, these are equivalent descriptions,
the two domains being related by

dx

dt
=

dx

dθc

dθc

dt
= Kcṅ

dx

dθc

with θc crankshaft angle and n angular veloc-
ity. Since crankshaft angular velocity is a natural
state variable, any model variable x undergoes
a non-linear transformation going from the t to
the θc domain. Newton’s law for instance, dṅ

dt =
T, takes on the non–linear form dṅ

dθc
= 1

ṅKc
T

in θc domain. The advantage of the t–domain
is that of retaining a linear description. This is
a remarkable advantage since control techniques
handling hard constraints, disturbance rejection
and model uncertainty - control invariant tech-
niques - are much more developed in the linear
case. In the linear discrete–time case, invariant set
computations are further simplified and, as linear
processing of signals can be done at quite fast
a rate by modern digital technology, it becomes
possible to keep track of variables at engine–cycle
level. However, control signal processing requires



sampling at a fixed rate and a time–discretization
somewhere in the plant–controller loop is neces-
sary. This introduces synchronization difficulties
since the motor torque is physically exerted only
in a neighborhood of the engine top dead center
angle. These difficulties in principle disappear in
the θc–domain, but re-appear under different form
as soon as the non-linear domain transformation
is linearized about a nominal angular speed - a
hardly avoidable step if more sophisticated con-
trol design techniques like [Abate et al., 1994]
or [Mayne, 2001] are to be used. More recently,
approaches based on hybrid systems have been
proposed [Balluchi et al., 2000] to describe engine
dynamics at cycle–level as a set of separate dy-
namic systems evolving in continuous–time with
discrete-time switches and variable resets driven
by internal (engine–cycle) or external (torque dis-
turbance) events. Our perspective in this paper is
similar. We model the engine as a continuous–time
dynamic system whose state is reset at prescribed
- and observed - crankshaft angles. This allows to
describe torque generation and control at cycle–
level. As motor torque is updated at each top-
dead center angle, and this is a measurable event,
the engine is viewed as a hybrid system with
event–driven state resets. When continuous–time
dynamics is discretized for control implementation
purposes, a synchronization problem arises as the
new state reset occurs after a time δt from the
old, variable with engine speed. However, if speed
is comprised between a lower and an upper bound
(as ISC specs demand) state reset can only occur
after a delay from the last event comprised be-
tween a maximum and a minimum. In Sec. 2 we
describe the model and, in Sec. 3 its discretized
version. In Secs. 4 we briefly outline the method-
ology employed. This is based on a novel ap-
proach to compute polyhedral invariants. We first
impose invariance every N steps of the discrete
time dynamics. Our interest towards the N–step
dynamics lies in the fact that, under reachability
assumptions, the extended control matrix B is
full–rank and this avoids notorious difficulties as-
sociated with the computation of an invariant set
SN in state space. We estimate in Sec. 5 a second
set S such that trajectories starting in SN stay
in S and in fact select a control law minimizing
departure from SN of trajectories originating in
it. Some simulated results and conclusions are
reported in Sec. 6.

2. IDLE SPEED ENGINE MODEL

The hybrid engine model considered in this paper
comprehends a continuous time component and
an event-driven reset function. The continuous-
time component is

ṗ = app + bpα

ṅ = ann + anpp + bn(T − Tl). (1)

The first equation describes pressure dynamics
in the intake manifold in terms of the throt-
tle opening angle α. Pressure dynamics depends
nonlinearly on crankshaft speed. However, speed
effects are negligible in idle mode and a linear
relationship for ṗ is justified. The second equa-
tion describes crankshaft dynamics in terms of
angular velocity n. The term ann accounts for
dynamic friction of rotational mechanisms in the
driveline. The term anpp is pumping friction due
to air-fuel mixture transport, opposing crankshaft
rotation. The external load torque Tl is regarded
as a disturbance. The variable T is a proxy of the
instanteneous motor torque; in fact the real torque
contributed by a single cylinder as a function of
θc ( θ̇c = Kcn) exhibits a sharp positive peak
immediately after the spark, and small negative
values elsewhere as shown in Figure (1). T is an
equivalent 3 torque assumed positive and constant
throughout the expansion stroke, and zero else-
where.

Fig. 1. Torque generation for a single cylinder

In a multi-cylinder engine there is torque overlap.
In a 4-cylinder 4-stroke engine 4 the overall torque
profile is shown in Figure (2). In this case cylinders
change stroke at the same time (every 180 degrees
of the crankshaft angle) and there is only one
cylinder active in each stroke. We say that the en-

Fig. 2. Torque generation for a 4-cylinder engine

3 in terms of an energy balance.
4 in what follows we refer to this case but, the situation is

similar in other engine configurations



gine is at a top dead center (TDC) when one of the
cylinders is at a compression TDC. Combining the
equivalent torques of each cylinder, the resulting
profile will be a piecewise constant function with
breakpoints 180 degrees apart.

Torque is a function of the manifold pressure p−

and of the spark advance θ−s decided at the last
engine TDC. It can be assumed

T = c1p
− + c2θ

−
s + c3, (2)

where p−, θ−s are values of air pressure and spark
advance at the end of intake stroke.

The range in which the linear model is meaningful
is described by upper and lower bounds on each
of the variables p, T, α, θs and Tl. The control
objective is to keep engine speed in the range

nmin ≤ n ≤ nmax (3)

for all possible values of the load torque Tl in its
range. Assuming engine to be at a TDC at time
t = 0, the dynamics for 0 ≤ t < tr, where tr is the
time of the next TDC when torque is reset, is

ẋ = Acx + Bcα + CcTl

where x = {p n T}′. At t = tr torque is reset on
the basis of prior values p−, θ−s . We assume the
following

A1 The angular position of the crankshaft is
known at engine TDCs

Assumption 1 captures the fact that the attain-
ment of a TDC is a measurable event that can be
profitably exploited in the controller synthesis.

The actual control algorithm is implemented in
the electronic control unit (ECU) which is a digi-
tal system. This feature suggests to handle delays
and controller design via a numerical control ap-
proach.

3. DISCRETIZATION AND N–STEP
DYNAMICS

Consider the discrete-time version of the model.
The time between two engine TDCs is subdivided
into N−1 equal intervals of length δt and an N–th
interval of length ≤ δt.

t t
0 tr

Fig. 3. Engine TDC at t = 0 and at tr, between
(N − 1)δt and Nδt

The discrete–time evolution within one engine
cycle is

x(k + 1) = Adx(k) + Bdα(k) + CdTl(k) (4)

if k = 0, 1 . . .N − 2,

x−(N ) = Aτ x(N − 1) + Bτ α(N − 1) +

+ Cτ Tl(N − 1) (5)

before reset, and

x(N ) = A1x(0) + Bθs(0) + Cc3 + A2x
−(N )(6)

after reset, where subscript d denotes discretiza-
tion with a fixed sample time δt, subscript τ dis-
cretization with a variable sample time 0 ≤ τ ≤ δt
and Ā1,2, B̄, C̄ are reset matrices. In the third
equation notice the delayed effect of pressure and
spark advance, as per eq. (2).

4. N-STEP BOX INVARIANCE

We are interested in the N–step dynamics, e.g.
the evolution of state control and disturbance
variables every N time–steps. Thus labelling

tk the time-instant kδt

tk + 1 the time-instant (k + N )δt

tk + 2 the time-instant (k + 2N )δt

. . .

the discrete–time description of the N–step dy-
namics is

x(tk + 1) = Ax(tk) + Bu(tk) + Cv(tk) (7)

where tk ∈ I, the set of non-negative integers,
x ∈ IR3 and u, v ∈ IR(N+1) with

u(tk) = [θs(k) α(k) . . .α(k + N − 1)]′

v(tk) = [c3 Tl(k) . . .Tl(k + N − 1)]′ (8)

It is easily checked that matrix B is full rank.
Notice if a feedback law u = F (x) is found,
this means that the state x(tk) at time kδt de-
termines the control θs(kδt), plus the N con-
trols α(kδt) . . . α((k + N − 1)δt). The set of all
these controls determines the state at time (k +
N )δt which is x(tk + 1). In other words, the
system evolves closed loop for t in the set {(k +
mN )δt, m = 0, 1, . . .} and open loop for t not in
this set. State constraints can be represented as a
box

X = {x : x ≤ x ≤ x̄} (9)

where x1 = pmin, x̄1 = pmax, x2 = nmin, x̄2 =
nmax, x3 = 0 and x̄3 = Tmax.

Disturbance constraints are represented by a box



V = {v : v ≤ v ≤ v̄} (10)

where v1 = v̄1 = c3, and vi = 0, v̄i =
Tlmax for i > 1 ; disturbance v is admissible if it
belongs to V.

Control constraints are represented by a box

U = {u : u ≤ u ≤ ū} (11)

where u1 = θmin, ū1 = θmax, and ui = αmin, ūi =
αmax for i > 1; control u is feasible if it belongs to
U .

Let R(X) be the reach set of X, e.g. the set
of states from which system (7) can reach X in
one step with a feasible control for all admissible
disturbances

R(X) = {x : ∃u ∈ U : Ax + Bu + Cv ∈ X

∀ v ∈ V } (12)

As is well known - and easy to check - invariance
of X holds if and only if

X ⊂ R(X). (13)

A set satisfying (13) has the property that once
the system state is in it, it is possible to keep it
there with a feasible control for any admissible
(and unknown) disturbance. In partucular, for
constant admissible disturbance X must contain
the equilibrium point of (7). Set now

Bu = σ (14)

and assume σ ∈ Q where

Q = {σ : σ ≤ σ ≤ σ̄.} (15)

In terms of the new control σ the discrete-time
N–step dynamics becomes

x(tk + 1) = Ax(tk) + σ(tk) + Cv(tk). (16)

We first establish conditions on σ, σ̄ ensuring
invariance of X for system (16). Subsequently we
use these to infer bounds on u for system (7).

Notation: given matrix A = [aij], we denote
by Ai its i−th row, A+ = [max(aij, 0)], A− =
[min(aij, 0)] (and A = A+ + A− with A+ ≥
0, A− ≤ 0). Given p matrices A1 . . .Ap, their
convex hull is Conv(A1 . . .Ap) = ∪α∈S

∑
i αiA

i

where S is the unit simplex of Rp.

Theorem 1. i. Set X is invariant for (16) under
(10,15) if and only if



A+ − I A−

−A− −A+ + I
−I I




[
x̄
x

]
≤



−w̄ − σ

w + σ̄
w − w̄


(17)

where
wi = min

v≤v≤v̄
Civ = C+

i v + C−
i v̄ (18)

w̄i = max
v≤v≤v̄

Civ = C+
i v̄ + C−

i v (19)

ii. Under this condition invariance is achieved
by controls satisfying
max(σ, x − w − Ax) ≤ σ ≤ min(σ̄, x̄ − w̄ − Ax)

with max, min taken componentwise.

Proof We first calculate R(X) for system (16)

R(X) = {x : ∃σ ∈ Q : x ≤ Ax + σ + Cv ≤ x̄, ∀v ∈ V }

= {x : ∃σ ∈ Q : x − w ≤ Ax + σ ≤ x̄ − w̄}(20)

with w, w̄ as defined in the statement. Notice that

R(X) 6= ∅ ⇒ w̄ − w ≤ x̄ − x (21)

which is the last row of the matrix inequality in i.
Assuming this holds

R(X) = {x : ∃σ ∈ Q : x− w − Ax ≤
≤ σ ≤ x̄ − w̄ − Ax} (22)

= {{x : x − w − Ax 6≤ σ̄} ∪ {x : σ 6≤ x̄ − w̄ − Ax}}c

where c denotes set complement. By De Morgan’s
law {A ∪ B}c = Ac ∩ Bc we obtain

R( X ) = {x : x − w − Ax ≤ σ̄} ∩
∩{x : σ ≤ x̄ − w̄ − Ax} =

= {x : x − w − σ̄ ≤ Ax ≤ x̄ − w̄ − σ}.(23)

Next, we impose invariance

X ⊂ R(X) ⇔





max Aix ≤ [x̄ − w̄ − σ]i
max −Aix ≤ [−x + w + σ̄]i

x ≤ x ≤ x̄ i = 1 . . .n

(24)

or

A+x̄ + A−x≤ x̄ − w̄ − σ (25)

−A−x̄ − A+x≤−x + w + σ̄ (26)

Inequalities (25,26) are the first two rows of the
matrix inequality in i. Under condition i. there
exists a feasible σ satisfying the inequality in (22),
which proves ii.

We remark that if the origin is contained in the
interior of X and V and if mini w̄i−maxi wi > 0,
then inclusion (13) in absence of noise implies
contractivity as well as invariance of X, e.g. there
exists λ ∈ (0 1) such that under a feasible control
X maps into λX at each step. This ensures asymp-
totic stabilizability of the equilibrium point. No-
tice also that from the inequalities in ii. the choice
of σ given x is not unique. For instance, a possible
control law is the midpoint control law, where σ
is chosen as the arithmetic mean of its bounds.

Theorem 2. i. Set X is invariant for (7) under
(10,11) if

{u : σ ≤ Bu ≤ σ̄} ⊂ {u : u ≤ u ≤ ū}

with w̄, w, σ, σ̄ satisfying (17) is non–void.



ii. Under this condition invariance is achieved
by controls satisfying

max(σ, x− w − Ax) ≤ Bu

≤ min(σ̄, x̄ − w̄ − Ax) (27)

Proof Directly from Thm 1.

Notice that the bounds for Bu are piecewise
linear–affine functions of x. This makes the control
law simple to implement. Notice also that these
bounds do not determine u uniquely. Such a de-
gree of freedom can be usefully exploited to limit,
e.g. minimize, departure of the state from X in the
time intervals comprised between two consecutive
TDCs. Before undertaking this minimization, we
establish the following robustness result.

Theorem 3. Given (7,9,10)

i. If the conditions of Thm 1 are satisfied for
Ai, Bi, Ci with wi, w̄i, σi, σ̄i i = 1 . . . p then
X is invariant for any system with
A, B, C ∈ Conv(A1, B1, C1 . . .Ap, Bp, Cp).

ii. The control law satisfying inequalities (27)
with

w = min
i

wi, w̄ = max
i

w̄i (28)

σ = min
i

σi, σ̄ = max
i

σ̄i

and A, B replaced by Ai, Bi, i = 1 . . . p makes
X invariant for any of the above systems.

Proof Let Ri(X) be the reach set of X under
system (Ai, Bi, Ci) and Rα(X) the same under∑

αi(Ai, Bi, Ci) (with α in the unit simplex of
IRp). If conditions of Thm 1 hold, ∩iRi(X) is
non-void and satisfies X ⊂ ∩iRi(X). Due to
convexity, ∩iRi(X) ⊂ Rα(X) ∀α and we conclude
X ⊂ Rα(X) ∀α, which proves i.

Part ii. follows from the fact that if X is
invariant under any system with A, B, C ∈
Conv(A1, B1, C1 . . .Ap, Bp, Cp) with constraints
U, V , it must keep the property with constraints
U ′ ⊃ U, V ′ ⊂ V. Now if Ui, Vi are the boxes de-
fined by wi, w̄i, σi, σ̄i then σ, σ̄ define the minimal
box containing all Ui’s and w, w̄ the minimal box
containing all Vi’s.

This result permits to handle uncertanity over τ ;
in fact, the matrices A, B and C are dependent on
the uncertain parameter τ (see Appendix 7.1) and
the p, Ai, Bi and Ci with i = 1 . . . p in Thm 3 are
chosen such that (A, B, C) ∈ Conv(Ai, Bi, Ci).

5. INTRACYCLE DYNAMICS: OPTIMAL
CHOICE OF U

If X is N -step invariant trajectories originating
in X return to X at most every N time steps.

As X need not be invariant (e.g. 1-step invariant)
it is of interest to estimate the smallest box that
contains all trajectories originating in X. We term
intracycle the dynamics occurring between two
TDCs. Let xc ∈ X. Since trajectories have finite
amplitude over finite time, there exists a λ < ∞
such that if x(0) ∈ X (see fig. 4)

x(m) ∈ λ(X − xc) + xc ∀m ∈ (0, N ) (29)

-

6

0 x1 x̄1

x2

x̄2

•xc














� x(m)

x(0)

X

λ(X − xc) + xc

Fig. 4. Departure from N–step invariant box

and (29) translates into

xc + λ(x − xc) ≤ Amx + Bmum + Cmvm ≤
≤ xc + λ(x̄ − xc),

with 0 < m < N , um = {u(0) . . .u(m)}′ and
likewise for vm (intracycle matrices Am, Bm, Cm

defined in the Appendix). As this must hold for
all v ∈ V, we re-write the above as

xc − wm + λ(x − xc) ≤ Amx + Bmum ≤

≤ xc − w̄m + λ(x̄ − xc) m ∈ (0 N ) (30)

where, similarly to (18,19) wm , w̄m are given by

wm = C+
mvm + C−

mv̄m

w̄m = C+
mv̄m + C−

mvm.

Finally, we must ensure N–step invariance of X

x − w ≤ Ax + Bu ≤ x̄ − w̄ (31)

and satisfaction of control constraints

u ≤ u ≤ ū. (32)

For given x = x(0) we can compute λ̂(x) =
minu λ subject to (30,31,32) – a LP problem. The
solution to this problem yields a control law of the
form

x(0) 7→ u(0) . . .u(N − 1)

that guarantees N–step invariance of X, and mini-
mal departure from X of system trajectories orig-
inating in X. An a-priori estimate of the maxi-
mal departure from X can be obtained by noting
that λ̂ − 1 is the Minkowski functional of X, a
well known convex function yielding the bound



λ̂ ≤ maxk λ̂(ξk) where ξk is the k − th vertex of
X. We conclude that X is invariant for (4-6) if
and only if maxk λ̂(ξk) = 1; otherwise, X is safe
wrt (X − xc)λ + xc for λ = maxk λ̂(ξk).

6. SIMULATED RESULTS AND
CONCLUSION

The graphs below illustrate the performance of
the N -step controller on a simulated model. in
correspondence of highly random changes in the
load torque.

Fig. 5. Simulated result: state variables

Fig. 6. Simulated result: control and disturbance
variables

In conclusion, we presented an innovative tech-
nique for ISC of a spark ignition engine.

With respect to typical control tools (PID,LQ,
H∞,l1, etc) used in literature, see [Carnevale
et al., 1993, Jayasuriya et al., 1994, Butts et
al., 1999, Morris et al., 1982, Williams et al.,
1989], our approach has the advantage of handling
hard constraints on state and control variables by
means of invariant techniques, see [Berardi et al.,
2001]. The use of invariants of prescribed shape
(boxes) while appealing in engineering practice,
permits drastic simplification in the computation.

7. APPENDIX

7.1 N -step dynamics

Iterating (4) for N −1 steps and grouping control
and disturbance terms as in (8) we get (7) with

A = A1 + A2Aτ AN−1
d (33)

B = [B|A2AτAN−2
d Bd . . .A2Aτ Bd|A2Bτ ](34)

C = [C|A2Aτ AN−2
d Cd . . .A2Aτ Cd|A2Cτ ] (35)

7.2 Intracycle dynamics

Am, Bm, Cm are defined as in (33–35) with N
replaced by m.
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