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Miloš Schlegel,1 Oldřich Večerek
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Abstract: The paper presents a simple and systematic procedure for automatic tuning of
dead time compensating controllers (DTC). It integrates a simple identification experi-
ment providing process characteristic numbers and a robust design method for an exactly
defined model family. This family contains all transfer functions having (a) the given a
priori form of lag/dead time transfer function (b) the experimentally obtained moment
characteristic numbers. The independently interesting result of this paper is the explicit
description of the value set for the model family. Copyright c© 2005 IFAC
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1. INTRODUCTION

Dead times between inputs and outputs are common
phenomena in many industrial processes and cause
considerable difficulties in effective control of them.
For more details see for example (Richard, 2003).

Smith (1958) suggested a dead-time compensation
scheme called Dead Time Compensator (DTC) or
Smith predictor. The Smith predictor whose parame-
ters are tuned using common frequency based design
criteria gives an excellent performance when an
exact process model is available but yields robustness
troubles when even small mismatches occur because
of the more complicated Nyquist curve shape at high
frequencies (Palmor, 1980). Nevertheless, a properly
tuned DTC can outperform conventional controllers
while achieving the same robustness. It is shown in
many simulations and experimental studies (Lee et al.,
1996; Åström and Hägglund, 2001). There exist many
semi-empirical DTC design methods which attempt
to overcome these robustness problems (Morari and
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Zafiriou, 1989; Santacesaria and Scattolini, 1993;
Ingimundarson and Hägglund, 2001; Mataušek and
Kvaščev, 2003) but the range of their applicability is
usually not well defined.

This paper presents a simple and systematic DTC
tuning procedure which never fails under given as-
sumptions. Furthermore, the procedure can be easily
automated. The key concepts introduced are process
characteristic numbers (the first three moments of
the process transfer function) and the exactly defined
model set containing all transfer functions that are
consistent with the a priori form of the lag/dead time
transfer function and with the experimentally obtained
characteristic numbers. Using these concepts an exact
robust design problem can be formulated and solved.

The paper is organized as follows: In Section 2 the
process characteristic numbers, their properties and
a simple identification experiment are introduced. In
Section 3 the model set is defined and several as-
sociated concepts are presented. The parametrization
of all ultimate transfer functions is given in Section
4 while Section 5 describes basic concepts of the
robustness regions method for DTC design. Section 6
introduces the DTC robust design problem involving



the robustness region method and the ultimate transfer
function parametrization as its basic concepts. Finally,
an example can be found in Section 7 and conclusions
are summarized in Section 8.

2. PROCESS CHARACTERISTIC NUMBERS

The process transfer function P (s) can be character-
ized by its moment sequence

mi =

∞
∫

0

tih(t)dt, i = 1, 2, . . . , (1)

where h(t) is the corresponding process impulse
response. The first few moments describe the low
frequency properties of the process well because of
the fact that the first elements of the Taylor series

F (s) = f0 + f1s + f2s
2 + . . . (2)

are determined by

fi =
1

i!
P (i)(0) = (−1)i 1

i!
mi. (3)

For processes with the monotonous step response it
turns out that the only first three moments may be
sufficient for a rough low frequency process model.
Further, the numbers m0, m1, m2 can be converted
into another triplet of characteristic numbers

κ = m0, µ =
m1

m0
, σ2 =

m2

m0
− m2

1

m2
0

(4)

with the following meanings: κ is the static gain
of the process, µ and σ are the mean and variance
of the ’density function’ h(t)/κ, respectively. In our
context, µ is usually called the resident time (Åström
and Hägglund, 1995) and σ2 is some measure for the
length of the process response. It is illustrated by the
following three examples.

Example 1. The characteristic numbers of the first
order system 1/(τs + 1) are κ = 1, µ = τ, σ2 = τ2.

Example 2. The characteristic numbers of the pure
dead time e−Ds are κ = 1, µ = D, σ2 = 0.

Example 3. The characteristic numbers of the zero-
order hold (ZOH) system

FZOH (s) =
1

s
(1 − e−Ls) (5)

are κ = L, µ = L/2, σ2 = L2/12. Note that the ZOH
system (5) converts the input Dirac pulse into the unit
rectangle pulse with the length L.

It is easy to prove the following lemma.

P(s)FZOH(s)
u(t)δ(t) h(t)

P(s)

P0(s)

P1(s)

y
C(s)

d
w

Fig. 1. Hypothetical series connection for determina-
tion of process characteristic numbers.

Lemma 1. Let the transfer function Pi(s) has char-
acteristic numbers κi, µi, σ

2
i , i = 1, 2, . . . , m, given

according to (1) and (4), then for the characteristic
numbers κ, µ, σ2 of the transfer function

P (s) = P1(s)P2(s) · . . . · Pm(s) (6)

it holds

κ = κ1κ2 · . . . · κm,
µ = µ1 + µ2 + . . . + µm,
σ2 = σ2

1 + σ2
2 + . . . + σ2

m.
(7)

From Lemma 1 and Examples 1 and 2 it emerges that
the transfer function of the monotonous process

P (s) =
Kpe

−Ds

(τ1s + 1) · . . . · (τns + 1)
(8)

has the following characteristic numbers

κ = Kp,
µ = D + τ1 + τ2 + . . . + τn,
σ2 = τ2

1 + τ2
2 + . . . + τ2

n.
(9)

Now, the way how the characteristic numbers κ, µ, σ2

can be obtained from a real identification experiment
will be described. For this purpose, consider the hy-
pothetical series connection H(s) = FZOH (s)P (s),
depicted in Fig. 1, where FZOH is given by (5) and
P (s) is a process transfer function.

The impulse response h(t) of this series connection is
clearly identical with the response of the process P (s)
to the rectangle pulse

u(t) =
〈 1, for t ∈ [0, L]

0, elsewhere (10)

as it follows from Fig. 1. Thus, the characteristic
numbers κH , µH , σ2

H of the transfer function H(s)
can be computed from the response of the process
P (s) to the rectangle pulse (10) according to (1) and
(4). Now, Lemma 1 and Example 3 give the following
expressions for the process characteristic numbers

κ =
κH

L
,

µ = µH − L

2
,

σ2 = σ2
H − L2

12
.

(11)

3. MODEL SET

In this section the model set of all lag/dead time
transfer functions with the order n and the given
characteristic numbers κ, µ and σ2 is defined.



Definition 1. (Model Set). Let a fixed n and the char-
acteristic numbers κ, µ, σ2 be given. A process trans-
fer function P (s) is called unfalsified (or an element
of the model set Sn(κ, µ, σ2)) if it is consistent with
the two following conditions:

(i) (A priori Hypothesis)

P (s) =
Kp

(τ1s + 1) · . . . · (τns + 1)
, (12)

where Kp > 0, τi ≥ 0, i = 1, 2, . . . , n.
(ii) (Interpolation Conditions) The transfer functions

P (s) has characteristic numbers κ, µ, σ2.

Remark 1. The condition (i) of Definition 1 expresses
the fact that the whole set of all real poles stable
systems of the order at most n is a priori admissible. It
means that all systems (8) with the pure dead time are
included for the case n → ∞.

Lemma 2. The model set Sn(κ, µ, σ2) is not empty iff

1

n
≤ σ2

µ2
≤ 1. (13)

Moreover, there exist infinitely many members of the
model set Sn(κ, µ, σ2) if the both strict inequalities
hold in (13).

The proof is given in (Večerek, 2004).

4. PARAMETRIZATION OF ALL ULTIMATE
TRANSFER FUNCTIONS

Definition 2. (Value Set) Let ω is a given frequency,
then the set

Fn(κ, µ, σ2; ω) =
{

P (jω) : P (s) ∈ Sn(κ, µ, σ2)
}

is called the value set of the model set Sn(κ, µ, σ2)
at frequency ω. The symbol ∂Fn(κ, µ, σ2; ω) denotes
the boundary of the value set Fn(κ, µ, σ2; ω).

Definition 3. (Ultimate Transfer Function) An unfal-
sified transfer function P (s) ∈ Sn(κ, µ, σ2) is said to
be ultimate if there exist at least one frequency ω > 0,
such that

P (jω) ∈ ∂Fn(κ, µ, σ2; ω). (14)

Without loss of generality the normalized case of κ =
1 and µ = 1 (obtained by gain and time normal-
ization) can be considered. Note, that the model set
Sn(1, 1, σ2) contains more than one element iff

1

n
< σ2 < 1 (15)

as it follows from Lemma 2.

Theorem 1. Let (15) holds and k is maximal integer
less than 1

σ2 + 1, then the unfalsified transfer function
P (s) is ultimate iff it can be expressed in the form

P α
ν (s) , (16)

1

(τν(α)s + 1)
n1 (ϑν(α)s + 1)

n2 (ζν(α)s + 1)
n3

,

where ν = (n1, n2, n3) is a multiindex ranging over
the list which depends on k:

(i) If k = 2 then the respective list is the following:
(1, 1, 1), (1, 2, 1), . . . , (1, n − 2, 1),
(n − 2, 1, 1).

(a)
(b)

(ii) If k ∈ {3, . . . , n − 1} then the respective list is:
(1, k − 1, 1), (1, k, 1), . . . , (1, n − 2, 1),
(n − 2, 1, 1), (n − 3, 1, 2), . . .

. . . , (n − k + 1, 1, k − 2),
(n − k, 1, k − 1),
(1, k − 2, 1).

(a)

(b)
(c)
(d)

(iii) If k = n then the respective list is the following:
(n − 2, 1, 1), (n − 3, 1, 2), . . .

. . . , (1, 1, n − 2),
(1, n − 2, 1).

(b)
(d)

Moreover, the parameters τν(α), ϑν(α) and ζν(α) are
given by

τν(α) = α,

ϑν(α) =
1 − n1α

n2 + n3
−√

n3 ·

·
√

σ2(n2 + n3) − (1 − n1α)2 − n1(n2 + n3)α2

√
n2(n2 + n3)

,

ζν(α) =
1 − n1α

n2 + n3
+
√

n2·

·
√

σ2(n2 + n3) − (1 − n1α)2 − n1(n2 + n3)α2

√
n3(n2 + n3)

,

where α ranges over the interval Iν = [aν , bν ]. The
expression for the end point bν is

bν =
1

n1 + n2 + n3
−

√
n3

√

σ2(n1 + n2 + n3) − 1√
n1 + n2(n1 + n2 + n3)

and the expression for the end point aν depends on the
type of a row to which ν belongs: If ν is in the row (a)
or (c) then aν = 0, if ν is in the row (b) or (d) then

aν =
1

n1 + n2 + n3

−
√

n2 + n3

√

σ2(n1 + n2 + n3) − 1√
n1(n1 + n2 + n3)

The proof is given in (Schlegel, 2000).

Now, some nearly evident consequences of Theorem 1
are briefly stated. Let ν = (n1, n2, n3) belongs to the
list of multiindexes from Theorem 1, then the value set
of the set {P α

ν (jω) : α ∈ Iν} for fixed frequency ω is
clearly a smooth curve called ν-arc. For each point of
this ν-arc there exists just one corresponding ultimate
transfer function in the form (16) and vice versa. The
endpoints of the ν-arcs correspond with the ultimate
transfer functions in the form
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Fig. 2. The boundary of the value set Fn(κ, µ, σ2; ω),
ω = 2, for κ = 1, µ = 1, σ = 0.6 and n = 10
(−), n = 100 (· · ·), n → ∞ (?). The ν-arcs and
corners are marked by the corresponding triples
(n1, n2, n3) and pairs (m1, m2) respectively.

P (s) =
1

(χ1s + 1)m1(χ2s + 1)m2

, (17)

where

χ1 =
1

m1 + m2
−

√
m2

√

σ2(m1 + m2) − 1√
m1(m1 + m2)

χ2 =
1

m1 + m2
+

√
m1

√

σ2(m1 + m2) − 1√
m2(m1 + m2)

and (m1, m2), m1 ≥ 1, m2 ≥ 1, are ordered pairs of
integers which range over the following list depending
on the value k from Theorem 1:
If k = 2, then (m1, m2) belongs to the list

(1, 1), (2, 1), . . . , (n − 1, 1).

If k ∈ {3, . . . , n − 1}, then (m1, m2) belongs to the
list

(k − 1, 1), (k, 1), . . . , (n − 1, 1);
(n − 2, 2), (n − 3, 3), . . . , (n − k + 1, k − 1);
(1, k − 1).

If k = n, then (m1, m2) belongs to the list

(n − 1, 1), (n− 2, 2), . . . , (1, n − 1).

For simplicity, ultimate transfer functions in the form
(17) will be called extreme.

Furthermore, it follows from Theorem 1 that the value
set Fn(κ, µ, σ2; ω), ω > 0, defined by Definition 2, is
bounded by a closed curve which consists of a finite
number of ν-arcs specified in Theorem 1. The corners
of this boundary curve are generated by the extreme
transfer functions (17). This is illustrated in the Fig. 2.

In the following, the fact that the extreme transfer
function (17) for (m1, m2) = (n − 1, 1) converges
to

P0(s) =
e−(1−σ)s

σs + 1
, P1(s)e

−(1−σ)s, (18)

when n → ∞ will be used. The proof is simple and
based on the identity limn→∞ 1/(D

n
s + 1)n = e−Ds.

P(s)FZOH(s)
u(t)δ(t) h(t)

P(s)

P0(s)

P1(s)

y
C(s)

d
w

Fig. 3. Structure of DTC.

5. ROBUSTNESS REGIONS METHOD

The robustness regions metod is a graphical method
allowing easy and straightforward design of two
parameters of a fixed structure controller; it is a
generalization of the D-partition method (Neimark,
1949). Basically, its objective is to isolate an area
(region) in the controller parameter plane where
a certain frequency domain design requirement is
fulfilled for a certain process. While regions obtained
for several processes and/or design requirements have
a nonempty intersection there exists an area where
all design requirements are satisfied for all processes
considered. Afterwards, a point defining the optimal
controller parameters is chosen from the area using
some proper criterion. The principles of the method
for PI(D) controller are treated in (Shafiei and Shen-
ton, 1997; Schlegel et al., 2003) in more details. In the
following, the generalization of the metod for DTC is
stated.

Consider a feedback control system in Fig. 3 in
which P (s) represents the process, C(s) primary PI
controller

C(s) = k

(

1 +
1

Tis

)

, k +
ki

s
, (19)

in which k and Ti are the gain and the integral time
constant respectively, ki , k/Ti is gain used in the
following and

Z(s) , P0(s) − P1(s)

is the dead time compensator (Smith predictor) which
consists of process models P0 and P1 defined by
(18). The design specification is the index of an
arbitrary chosen point c to the Nyquist plot of the
respective open loop system in the complex plain.
Almost arbitrary shaping of the Nyquist curve can be
performed by involving more such points to the design
procedure covering all usual frequency-domain design
specifications (gain and phase margins, constraints on
sensitivity functions peak values. . . ).

Denote for simplicity

P (jω) , a + jb, Z(jω) , q + jr, d ,
ki

k

Then, for open loop transfer function (Nyquist curve)
L(jω) of the system from fig. 3 it must hold



L(jω) =
C(jω)P (jω)

1 − C(jω)Z(jω)
=

=
k(1 − j d

ω
)(a + jb)

1 − k(1 − j d
ω
)(q + jr)

(20)

Now, the goal is to isolate such regions in the
controller parameter plane k − ki that the point c has
the same index to the corresponding Nyquist curves
in the complex plane for all points from a certain
region. It is evident that for all points on the regions
boundaries the corresponding Nyquist curve L(jω)
must pass through the point c in the complex plane.
In other words it must hold

L(jω) = c , u + jv (21)

at some frequency ω where L(jω) is given by (20).
The equation (21) has a unique solution for unknown
controller parameters k and d:

k =
Υ

Ψ
, d =

Ξ

Υ
, (22)

where
Υ = ua + qv2 + qu2 + bv,
Ψ = a2 + 2auq − 2avr + q2v2 + q2u2+

2bvq + 2rbu + b2 + v2r2 + u2r2,
Ξ = (ru2 + bu− av + rv2)ω.

The parametric curve (k(ω), ki(ω) = k(ω)d(ω))
defined by (22) divides the parametric plane k−ki into
several regions. All points of the given region fulfill
the property that the point c has the same index to
all corresponding Nyquist plots L(jω). If such regions
are plotted for several different points c a region can be
isolated with L(jω) properly shaped. This procedure
can be performed for finite number of processes and
points and then a ’satisfactory’ region can be found
where Nyquist plots L(jω) of all systems are properly
shaped.

Now, from the ’satisfactory’ region where all the
corresponding closed loop systems are stable and all
the corresponding Nyquist curves are properly shaped,
the optimal point which minimizes the disturbance
rejection performance index

J =
1

ki

(23)

is chosen according to (Åström et al., 1998).

6. ROBUST DTC DESIGN FOR THE MODEL SET

This section describes the design procedure of DTC
for the model set Sn(1, 1, σ2). Let n, the normalized
σ, 0 < σ < 1, and several frequency design
specifications in the form of points c are given. The
objective is to design a fixed DTC which fulfils
the given specifications for all unfalsified transfer
functions from the model set Sn(1, 1, σ2). It is easy

Table 1. Coefficients of the DTC parameters
approximation (24)

a0 a1 a2 a3 a4

k 0.213 -0.947 34.2 -65.0 37.7
ki 2.22 -0.179 8.09 -16.2 13.1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2
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k
i
 

k 

σ 

Fig. 4. Gains k and ki of the controller (19).

to prove that instead of Sn(1, 1, σ2) it is sufficient
to consider only its small subset containing all the
ultimate transfer functions. In this way, much more
easier and equivalent robust design problem is ob-
tained because of Theorem 1. Since the set of all the
ultimate transfer functions is infinite, it is necessary to
use some its finite approximation for the computation
e.g. set of all the extreme transfer functions (17)
associated with the model set Sn(1, 1, σ2). Though
such approximation does not lead generally to the
exact solution of the above problem, it turns out that
the controller obtained in this way is at least very close
to the exact solution.

7. EXAMPLE

In this example the model set Sn(1, 1, σ2), n = 100,
σ ∈ [0, 0.8] is considered. The frequency domain
robust specifications are following:

(a) For the maximum of sensitivity function

Ms , max
ω∈[0,+∞)

1

1 + L(jω)

it holds Ms ≤ 1.7
(b) The open loop Nyquist plot L(jω), ω > 0,

does not intersect the real axis in the interval
(0.6, +∞).

Both of these specifications can be (approximatively)
transformed to the form of four points ci in the com-
plex plane: c1 = −0.41, c2 = −0.43 − 0.15j, c3 =
−0.49 − 0.29j, c4 = 0.6 as can be seen in Fig. 6.
Solutions obtained for all extreme transfer functions
of the model set for different values σ are depicted in
Fig. 4 and approximated by

f(σ) = a0e
a1σ+a2σ2+a3σ3+a4σ4

, (24)

where corresponding coefficients a0, a1, . . . , a4 are
given in Tab. 1.

Figs. 5 – 7 treat the special case σ = 0.4. Fig. 5
presents the corresponding robustness regions. The
optimal point used for controller design according to
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Fig. 5. Robustness regions in the parameter plain.

criterion (23) is emphasized by an arrow. Fig. 6 depicts
the open loop Nyquist plots and Fig. 7 shows closed
loop set-point and load disturbance step responses for
all the extreme transfer functions.

8. CONCLUSIONS

This paper describes a new systematic tuning proce-
dure for DTC which guarantees the fulfilment of all
design specifications for arbitrary order lag/dead time
process transfer functions. The procedure integrates
all necessary steps from the simple identification
experiment which provides just the three process
characteristic numbers to the tuning formulae by
which the robust parameters of the controller are
computed. Notice, that the same tuning procedure
can be used for tuning of DTCs for integrating
processes (Večerek, 2004) and also for conventional
PI(D) controllers.
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