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Abstract: Temperature modelling of human tissue exposed to therapeutic ultra-
sound is essential for an accurate instrumental assessment and calibration. In this
paper punctual temperature modelling of an homogeneous medium, radiated by
therapeutic ultrasound, is presented. Two different approaches are considered: a
completely nonlinear approach (Radial Basis Functions neural networks (RBF)),
and a hybrid (Linear plus nonlinear) approach (Radial Basis Functions neural
networks with Linear Input Connections (RBFLIC)). The best-performant Neural
Network (NN) structures were obtained using a Multi-Objective Genetic Algo-
rithm (MOGA). The best RBFLIC structure for the applied MOGA parametri-
sation, presents 28% improvement in the performance of the best RBF structure.
Copyright c© 2005 IFAC.
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1. INTRODUCTION

The lack of reliable human tissue models condi-
tions a broader use of therapeutic ultrasound in-
strumentation. The existence of precise and effec-
tive tissue temperature variation models together
with fine tuned instrumental control, will provide
usage of ultrasound therapy on small areas, depth
controlled, and cellular targeted applications.
Having in mind non-invasive temperature esti-
mation in time and space, previous work in the
area considers that the changes in temperature
are linearly related with the changes in sound ve-
locity and with the medium expansion, achieving
a maximum absolute error of 0.44oC, an aver-
age error of -0.02oC, and a mean squared error
of 0.03(oC)2. These error values were obtained
with experiments were the temperature ranged

between 20.5oCand 24.5oC(Simon et al., 1998).
There is also work reporting this kind of non-
invasive estimation applied to therapeutic instru-
mentation control(Seip et al., 1996).
Previous studies of our research group in punctual
and nonlinear temperature modelling, considered
RBF to estimate the temperature in a homoge-
neous medium, when it is irradiated by thera-
peutic ultrasound. The values of the fundamental
component of the intensity spectrum, and the past
temperature values were considered relevant RBF
inputs. The maximum absolute error obtained so
far was 0.2oC, in a temperature range between
31oCand 38.8oC(Teixeira et al., 2004).
The work hereby presented, considers similar ex-
perimental conditions of (Teixeira et al., 2004)
but the temperature modelling is now performed
by a completely nonlinear approach (RBF), and



Table 1. Temperature ranges.

Intensity Temperature (oC)
(Watt/cm2) Initial Max. Final

1 29 34.5 28.5
1.5 30 37.2 28
2 31 38.8 31

compared with a hybrid approach (RBFLIC). The
values of the fundamental component of the inten-
sity spectrum, associated harmonics, and the past
temperature values are inputs of the RBF(LIC).

2. EXPERIMENTAL SETUP

Temperature and acoustic intensity signals, mea-
sured in a 48 mm axially distant point from an
ultrasonic therapeutic probe submerged in a glyc-
erin tank (homogeneous medium) are the data
considered in this work. Data was acquired dur-
ing approximately 110 min. At each 10 seconds,
a discrete value of the temperature waveform
was acquired, as well as a 5µs wide window of
the acoustic intensity signal. That window cor-
responds to 2000 points of the intensity wave-
form. Mechanical energy was supplied only in the
first 60 min, by the ultrasonic therapeutic device
(Ibramed Sonopulse (São Paulo)), since in the last
50 minutes the acoustical energy was maintained
at zero level. Three sets of signals were acquired at
3 MHz in continuous operating mode, at three dif-
ferent intensities: 1Watt/cm2, 1.5Watt/cm2 and
2Watt/cm2. The initial, maximum, and final tem-
perature of the glycerin medium in the point of
interest are summarised in Table 1. The experi-
mental arrangement is described in Fig. 1.

Sonopulse

Device
Ultrasonic Therapy

Hydrophone

Termocouple

Glycerin

80 TK
Fluke

Mult. HP 34401A

Amp
10 MHz

Osc. HP 54600B
100 MHz PC

G
PIB

Fig. 1. Experimental setup.

3. METHODS

3.1 Processing the experimental data

From the intensity signals collected from the ex-
periment, some spectral features were extracted
aiming the development of the temperature mod-
els. After a Fast Fourier Transform computation
the amplitude of the fundamental component (≈3
MHz), of the first harmonic (≈6MHz), and of the
second harmonic (≈9MHz) were saved for future

use in the RBF(LIC) training, test and validation.
In a posterior phase, the feature extracted and the
measured temperature signals were normalised
between 0 and 1, in order to eliminate the dif-
ferences in scale between the variables, having as
objective the correct training of the NNs. The
convention used for the remaining text is the fol-
lowing: normalised amplitude of the fundamental
component - Ifc, normalised amplitude of the first
harmonic - I1h, normalised amplitude of the sec-
ond harmonic - I2h, and normalised temperature
- T .
At the end of this process we selected the data
collected at 1Watt/cm2 for training, the data
collected at 1.5Watt/cm2 for test, and the data
collected at 2Watt/cm2 for validation. The train-
ing, test, and validation sets are composed by 429,
427, and 400 patterns, respectively.

3.2 RBF and RBFLIC

A RBF consists of a three fully connected layered
NN. The first layer is a set of inputs, the second is
formed by a set of processing elements, called neu-
rons, which perform a nonlinear transformation on
the input data. The last layer combines linearly
the output of the hidden layer to compute the
overall network output. The input/output (I/O)
relation for a RBF is given by:

f(xj) = b +
n∑

i=1

αiϕ (||xj − ci||) (1)

where n is the number of neurons in the hidden
layer, b is the bias term, ||.|| is an Euclidean
norm, and ϕ (||xj − ci||) is a set of nonlinear radial
basis functions weighted by {αi}n

i=1. The basis
functions are centred at {ci}n

i=1 (centres) and are
evaluated at points xj . Usually these functions are
Gaussian:

ϕi = e
1

2σ2
i

||xj−ci||2
(2)

An RBFLIC (Fig. 2) is formed by a normal RBF
plus a set of linear input connections. The I/O
relation for this network is given by:

fLIC(xj , xlj) = b +
n∑

i=1

αiϕ (||xj − ci||) (3)

+
l∑

k=1

λkxljk

where {xljk}l
k=1 is the set of linear inputs, and

{λk}l
k=1 are the associated weights.

3.3 Multi-objective Genetic Algorithm (MOGA)

In the construction of a RBF(LIC) several ques-
tions arises: What is the appropriate number of
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Fig. 2. RBFLIC topology.

neurons that produces the smallest error? Which
are the important input variables for a good
model? What are the important lags of those
variables?(Ferreira et al., 2003) Which lagged
variables should be used as additional linear in-
puts, and which ones should be inputs to the
neurons?
To answer these questions a MOGA (Fonseca and
Fleming, 1993) was used to select the best fitted
RBF structures (Ferreira et al., 2003). In this work
the same approach was extended to the RBFLIC
case. The important variables considered were:
the spectral features referred in 3.1 (Ifc, I1h, and
I2h), and the past values of T . In order to define
the MOGA search space, the number of inputs
was restricted to a maximum of 20 for the RBF
case, and 20 linear and nonlinear inputs for the
RBFLIC case. The number of neurons was re-
stricted to the interval [2, 15] for both topologies,
and the maximum admissible lag (MLAG) was
defined to be 20. In this particular case MOGA
ran during 100 generations, of 100 RBF(LIC)
(individuals) each. The crossover and mutations
probabilities were defined as 0.7 and 0.5 respec-
tively. To maintain population diversity in each
generation, 10% of the population was changed
by a randomly generated set of individuals. The
previously referred values were the ones that pro-
duced the best MOGA results, and were selected
after several tests, considering different parameter
arrangements.

3.3.1. Computation of individuals performance
The training of each individual was performed
using the Levenberg Marquardt (LM) algorithm
with the “early-stopping” termination criteria
(Ferreira et al., 2002). At each iteration the LM
optimised only the values of the centres and
spreads, while the linear parameters ({αi}n

i=1

and {λk}l
k=1) were obtained using the “Least

Squares”(LS) strategy(Ferreira et al., 2002). This

approach reflects a nonlinear-linear structure as
found on RBF NNs. The initial values of the
centres and spreads were determined using the
optimal k-means algorithm (Chinrungrueng and
Séquin, 1995).
After training, the performance of each individual
was accessed according to the following measures:

• Root Mean Square Error in the TRaining set
(RMSETR)

• Root Mean Square Error in the TEst set
(RMSETE)

• Model-validity tests
• Model ComPlexity (MCP)

The model-validity tests considered are described
in (Billings and Voon, 1986), (Billings and Zhu,
1993), and used in (Ferreira et al., 2003). These
tests involve the computation of auto-correlation,
cross-correlation and higher correlations functions
involving model residuals, inputs, and outputs.
If the fitted model is adequate, the following
conditions should hold:

Ree(τ) = δ(τ)

Rue(τ) = 0 ,∀τ
Ru2′e(τ) = 0 ,∀τ

Ru2′e2(τ) = 0 ,∀τ
Re(eu)(τ) = 0 ,τ ≥ 0

Re2e2(τ) = δ(τ)

R(ye)e2(τ) = kδ(τ)

R(ye)u2(τ) = 0 ,∀τ (4)

In reality, the correlations presented in eq. 4 will
never equal zero for all lags. This way, the model is
considered adequate if the normalised correlation
tests lie within 95% confidence limits, defined as:

CI = 1.96/
√

N, (5)

where N is the number of training patterns. In
the same way, the autocorrelations of the residuals
never match exactly the delta function, but will be
considered as adequate if the autocorrelation plot
enters the 95% confidence interval before lag one.
The MCP is computed as the total number of
parameters for a particular NN structure:

MCP = NC ×NLE + NS + NW, (6)

where NC is the number of centres, NLE the
number of nonlinear entries, NS the number of
spreads, and NW = n + l is the number of linear
plus nonlinear weights.

3.3.2. MOGA objectives, goals, and priorities
From the MOGA point of view, the RMSETR,
RMSETE, maximum of correlation test, and
MCP are objectives to minimise. Having in mind
the attainment of models with a higher generalisa-
tion capacity, the RMSETE was defined as a goal



of priority 2, and with value 0.003. The maximum
of the correlation tests were defined with a goal
value of CI = 1.96/

√
429−MLAG = 0.097, and

with priority 1. In order to discard large models
of heavy computation, MCP was defined as a
goal with priority 1, and value 70. This value was
selected having in mind the MOGA search space,
defined in sub-section 3.3.

4. RESULTS AND DISCUSSION

In this section the selection of the best individuals
from the preferable set, was based in the RMSEV.
This means that the best individual is the one
presenting the best Root Mean Square Error in
the Validation set (RMSEV), when compared to
other individuals in the preferable set.
The assumptions made in this section are relative
to the present MOGA parametrisation and to
the runs presented, discarding any attempt of
generalisation.

4.1 RBF

The MOGA run applied for RBF NNs, executed
as explained in sub-section 3.3, yielded a non-
dominated set with 2552 individuals and a prefer-
able set of 15. From the preferable set the best
individual presents a RMSEV of 0.0018, a max-
imum absolute error of 0.09oC, a mean squared
error of 0.0049 (oC)2, and an average error of
-0.0184 oC. This model has 6 neurons, and a
weights norm of 4.756. The MOGA objectives for
this individual are presented in Table 2. Looking
at these values, we can state that this individual
fulfils 7 out of 10 goals. However, the goals that
are not fulfilled are close to the desired values.
The inputs (nonlinear inputs) of this individual
are presented in Table 3. Analysing this table we
can say that the information from Ifc is not of
interest for temperature modelling, considering its
absence in the input set. The importance of the
first harmonic is marked by the presence of 2 lags.
The second harmonic information is important for
the temperature modelling, taking into account
the great number of inputs related to this variable.
The past memory of the system (past temperature
values) is also relevant for the model. The physical
validity of the system can be demonstrated by the
presence o the first lag of the temperature variable
(T (k−1)), showing that the actual temperature is
dependent of the temperature in the previous 10
seconds. The temperature in the past 60 seconds
(1 minute) is also important for the estimation of
the actual temperature (T (k)), given the presence
of T (k − 6). The presence of this lag reflects the
thermal capacitance of the glycerin tank.
Fig. 3 shows the absolute frequency of the RBF

inputs. Analysis of this figure enables stating that
all the RBFs in the preferable set do not have lags
of Ifc, showing that its absence in the best individ-
ual is not accidental. The 1st lag of Ih1 (Ih1(k −
1)) appears in 13 of the 15 NNs demonstrating
its importance for the model. The 6th lag of Ih2

(Ih2(k − 6)), as well as the 1st lag of T appears
in all preferable NNs. The previous statements,
and the fact that all the NNs have 6 neurons,
demonstrate the convergence of the MOGA for
the parameterisation presented in sub-section 3.3.
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Fig. 3. Absolute frequency of the RBF inputs
(preferable set).

Comparing the results in this work, with those
presented in (Teixeira et al., 2004), it can be
said that the consideration of the 1st and 2nd

harmonics of the intensity spectrum as inputs
together with the additional objectives introduced
in MOGA, lead to a reduction of the maximum
absolute error from 0.2oC to 0.09oC. In addition,
the information of the fundamental component
(Ifc) is completely discarded from the preferable
set in this work, reflecting that temperature mod-
elling is better achieved when only information of
Ih1, Ih2, and T is considered as inputs.

4.2 RBFLIC

MOGA was applied to RBFLIC, yielding a non-
dominated set of 2902 individuals, and a preferred
set of 20. The best individual presents a RMSEV
of 0.0014, a maximum absolute error of 0.12oC,
a mean squared error of 0.0032(oC)2, and an av-
erage error of -0.0047oC. This model has 3 neu-
rons, and a weight (||{αi}n

i=1 + {λk}l
k=1||) norm

of 0.9206. The MOGA optimisation objectives are
also presented in Table 2. This individual fulfils 6
out of 10 objectives defined. In the same way as
for RBFs, the objectives which are not fulfilled
are close to the defined goal. The linear and non-
linear inputs of the best individual are presented



Table 2. Performance of the best RBF(LIC)

RMSETR RMSETE MCP Ree Re2e2 R(ye)e2 R(ye)u2 Rue Ru2e2 Ru2e Re(eu)

RBF 0.0009 0.0016 61 0.0921 0.0156 0.0987 0.0762 0.0869 0.1080 0.0762 0.1046
RBFLIC 0.0009 0.0014 69 0.1243 0.0154 0.1067 0.0848 0.0933 0.1096 0.0860 0.1256

Goal - 0.003 70 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097
Prior. - 2 1 1 1 1 1 1 1 1 1

Table 3. Inputs of the best RBF(LIC)

Input type Ifc Ih1 Ih2 T

RBF Nonlinear - 1,4 5,6,15,18 1,6

RBFLIC
Nonlinear

Linear
1,7

1,2,6,7
7,9,12,15
6,8,12,14

1,3,6,13
6,9,17,18

2,7,11,17
1,5,7,8,12,14,16,17

in Table 3. From this table it can be stated that
the information of Ifc is of reduced importance as
a non-linear input, since only two lags (Ifc(k− 1)
and Ifc(k − 7)) appeared, as for the RBF run.
However, the information of this variable is more
important as a linear input. The information of
Ih1 has the same relevance as both nonlinear and
linear inputs, given the same number of lags. In
addition, those lags are in the same range, be-
tween 6 and 15, and are almost mutually exclu-
sives. The past values of T (memory of the system)
appears in a great number as linear inputs. The
physical validity of the best model can be proved
by the presence of the 1st lag of T (temperature
value in the past 10 sec.) as a linear input, and
the 2nd lag of T as a nonlinear input. The medium
and higher lags of the estimated variable are also
important in the models, ie. the medium term and
long term memory of the system.
Fig. 4 presents the absolute frequency, in the
preferable set, of the nonlinear and linear inputs
of the RBFLIC. From the analysis of this figure
it can be said that, the lags between 1 and 8 of
Ifc (short lags) are of great importance for the
models, specially the 6th lag as linear input, and
the 7th lag as a nonlinear input. In the case of Ih1,
the important information is related with the lags
between 6 and 15, that is the medium lags. Lag
15 appears in 19 of the 20 preferable individuals
as nonlinear input, indicating that the informa-
tion of this variable, 150 seconds in the past, is
important for the models, and it is nonlinearly
related with T (k). In the same way, the 6th lag
of Ih2 (Ih2(k − 6))appears also in 19 of the 20
preferable individuals as linear input. This lag
is also important as a nonlinear input, given its
presence in 15 preferable individuals. The lags 1
and 18 are also relevant as linear and nonlinear
inputs, as well as lag 8 as linear input. The past
memory of the system (lags of T ), as expected, is
of great importance as linear inputs, specially lags
1, 12, 14, and 17. The presence of 20 preferable
individuals with lag 1 as input proves the physical
validity of the system. The other lags show that
the temperature 120, 140, and 170 seconds in the
past is also important for the estimation of T (k),
again reflecting the thermal capacitance of the

glycerin tank.
The presence of high absolute frequencies in the
preferable set of some inputs, for example T (k−1),
T (k− 14), Ifc(k− 6), Ih1(k− 15), and Ih2(k− 6),
and the presence of 8 NNs with 3 neurons, and 6
NNs with 5 neurons in the preferable set, indicates
that MOGA converges to a group of individuals.

0  2  4  6  8  10  12  14  16  18  20
0
 
2
 
4
 
6
 
8
 

10
 

12
 

14
 

16
 

18
 

20

Lag

A
bs

ol
ut

e 
fr

eq
ue

nc
y

 I
fc Nonlinear

Linear

0  2  4  6  8  10  12  14  16  18  20
0
 
2
 
4
 
6
 
8
 

10
 

12
 

14
 

16
 

18
 

20

Lag

A
bs

ol
ut

e 
fr

eq
ue

nc
y

 I
h1 Nonlinear

Linear

0  2  4  6  8  10  12  14  16  18  20
0
 
2
 
4
 
6
 
8
 

10
 

12
 

14
 

16
 

18
 

20

Lag

A
bs

ol
ut

e 
fr

eq
ue

nc
y

 I
h2 Nonlinear

Linear

0  2  4  6  8  10  12  14  16  18  20
0
 
2
 
4
 
6
 
8
 

10
 

12
 

14
 

16
 

18
 

20

Lag

A
bs

ol
ut

e 
fr

eq
ue

nc
y

 T Nonlinear
Linear

Fig. 4. Absolute frequency of the RBFLIC inputs
(preferable set).

4.3 RBF and RBFLIC

Comparing both approaches hereby presented we
may conclude that the best RBFLIC presents an
increase in performance of approximately 22%, in
agreement to the RMSEVs attained. The mean
squared error is reduced from 0.0049 (oC)2 in the
RBF case to 0.0032 (oC)2 in the RBFLIC case.
The average error is also better in the RBFLIC
case, a reduction in approximately 74% is ob-
tained. However, the maximum absolute error is
better in the RBF case, in approximately 0.1oC.
This contradiction is probably related with the
presence of outliers. In terms of MCP, the best
model in RBFLIC presents 69 parameters, against
61 in RBF run. This implies that the best RBF
is less complex than the best RBFLIC in 8 pa-
rameters. This increase in RBFLIC complexity is
related to the great number of linear inputs, given
the reduced number of neurons in this model.



In general, the MOGA parametrisation presented
in sub-section 3.3, applied to RBFLIC reached
better results. In fact the RMSEV in the RBFLIC
preferable set presents a medium value of 0.0018
with variance 1.6×10−7, against 0.0025 with vari-
ance 2.37× 10−7 in the RBF preferable set. This
implies that the results achieved with the hybrid
approach are in general 28% better. The success
of the hybrid approach can be explained by the
great linear component of the data. In this case
a RBF NN with additional linear inputs performs
better than a pure nonlinear RBF.
Comparing the results obtained in this work with
the ones presented in (Simon et al., 1998), it can
be said that better results were achieved. The
maximum absolute error was reduced from 0.44
oCto 0.09oC, the average error was reduced from
-0.02oCto -0.004oC, and the mean squared error
was reduced from 0.03(oC)2 to 0.0032(oC)2.

5. CONCLUSIONS & FUTURE WORK

The work hereby presented follows the work on
punctual temperature modelling, published in
(Teixeira et al., 2004). The results reveals that
a better performance is obtained for the MOGA
parametrisation applied using a hybrid approach
(RBFLIC), instead of using the normal approach
(RBF). The increase in performance is approxi-
mately 28%. In addition, the best models obtained
perform better than the best model in (Teixeira et
al., 2004). Although this work deals with punctual
and invasive temperature estimation, the results
point that better results should be obtained, in the
same conditions of (Simon et al., 1998), using this
kind of methods. The temperature values used in
this work ( Table 1) are higher, representing the
normal human temperature. At higher temper-
ature values the transmission between mediums
is higher, and more nonlinear properties arises.
This imply that temperature modelling at low
temperatures is more simple, and probably better
performed by the RBF(LIC).
For future work it is suggested the use of B-
Splines NN to approach this problem. This NN use
different basis functions through the input space,
locally adjusting itself to the problem.
It is also suggested for future work, to attempt
modelling of temperature in time and space. This
is a fundamental step in order to obtain feed-
back information for therapeutic ultrasound in-
strumentation control.
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trasonora, Universidade de la República, Uruguay),
for the help in real data collection.

REFERENCES

Billings, S. and Q. Zhu (1993). Nonlinear model
validation using correlation tests. Research
report no 463. Department of Automatic Con-
trol and Systems Engineering, University of
Sheffield. Sheffield S14DU, UK.

Billings, S. and W. Voon (1986). Correlation
based model validity tests for non-linear
models. International Journal of Control
44(1), 235–244.

Chinrungrueng, Chedsada and Carlo H. Séquin
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