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Abstract: The problem of designing an output feedback compensator for any biased 
sinusoidal disturbance is considered. In this paper, we will develop the approach 
presented in (Marino  et al., 2003). In (Marino  et al., 2003) a compensator of order 
(2n+6) is proposed, which solves the posed problem by using the adaptive observers 
developed in (Marino and Tomei, 1995;  Marino  et al.,  2001). This problem is solved 
by a ( )-order compensator. Copyright © 2005 IFAC 4+n
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1. INTRODUCTION AND PROBLEM 
STATEMENT 

 
The problem of complete rejection of external 
inaccessible disturbances plays an important role in 
the modern control theory. In this paper we consider 
an adaptive compensation problem of a biased 
sinusoidal disturbance )sin()( 0 φωσσ ++= ttw  

for any unknown constant value of  ω , φ , σ , 0σ . 
The known approaches to the given problem can be 
classified depending on a priori required information 
about the disturbance. If the frequency ω  is known, 
the posed problem has a classical solution (Davison, 
1976; Francis and Wonham, 1975; Jonson, 1971) by 
modelling the disturbance as a linear exosystem and 
by using an observer which provides an asymptotic 
estimate of the disturbance so that it can be 
cancelled. An interesting result for a linear discrete-
time control system affected by an additive 
sinusoidal disturbance with known frequencies but 
unknown amplitudes and phases was presented in the 
paper (Lindquist and Yakubovich, 1997). The main 

result of this paper concerns the existence and design 
of a realizable, robust optimal regulator, which is 
universal in the sense that it does not depend on the 
unknown amplitudes and phases and is optimal for 
all choices of such parameters. 
  
If the frequency ω  is unknown, the posed problem 
has been studied in a series of papers (Bodson et al., 
1994; Bodson and Douglas, 1997; Hsu et al., 1997; 
Hsu et al., 1999; Marino et al., 2003; Mojiri and 
Bakhshai, 2004; Savaresi, 1997), in the case of an 
unbiased sinusoidal disturbance. In particular in 
(Bodson and Douglas, 1997), two schemes (direct 
one and indirect one) are presented and analyzed: 
while the direct scheme is used for local initial 
conditions of the frequency estimate, the indirect one 
(Hsu et al., 1997; Hsu et al., 1999), can be used for 
larger initial conditions; on the other hand only the 
direct scheme guarantees exact disturbance 
compensation. In paper (Savaresi, 1997) a new class 
of filters (of fourth order) was presented. These 
filters enable one to estimate harmonic signals with 
enhanced tracking capability.  
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in (Marino  et al., 2003). In (Marino  et al., 2003) a 
compensator of order (2n+6) is proposed, which 
solves the posed problem by using the adaptive 
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Model (5) can be written as 
 

. (8) wuyy ++−= β&

 
 It is easy to see that signal is biased sinusoidal 

disturbance and we can rewrite 
)(tw

Consider the linear single-input, single-output 
observable system (Marino  et al., 2003)   

)sin()( 0 φωσσ ++= ttw . 
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Now we will define the purpose of control as the 
solution of the problem of an algorithm design which 
at any initial conditions of the plant ensures the 
following: 
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nin which x∈ℜ  is a state, u∈ℜ is a control, w ∈ℜ is 

a modeled disturbance; the output y∈ℜ, which is the 
only measured variable, is required to be regulated to 
zero. The disturbance input 

We shall derive the solution of the problem in two 
stages. First, assuming, that the signal  is 
measured (see the equation (7)), we will construct an 
observer of the disturbance . Further, using 
results of the first stage, we will solve a complex 
problem of rejection of external inaccessible 
disturbance 

)(tw

w  is modeled as )(tw
 

)sin()( 0 φωσσ ++= ttw ,  (3) 
 )sin()( 0 φωσσ ++= ttw  for model (8). that is a biased sinusoid of unknown constant 

magnitude  , unknown frequency 0>σ 0>ω , 
unknown phase 

 
2. DESIGN OF THE DISTURBANCE OBSERVER 0σand unknown bias . φ

  
In this section, assuming that the signal  is 
measured, we will construct the observer that ensures 
the following purpose: 

)(twConsider the following assumptions (Marino  et al., 
2003). 
 
Assumption 1. All coefficients ,  ia ib 10 −≤≤ ni  
are known.  
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Assumption 2.  The polynomial  
 has all its roots 

with negative real part. 
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Assumption 3. The polynomial 
 has no roots on the 

imaginary axis. 

 
It is easy to show that the biased sinusoidal 
disturbance )sin()( 0 φωσσ ++= ttw01

1
1 ...)( bpbpbpb n

n +++= −
−  is modeled by 

the third-order linear exosystem 
  

We perform a series of modeling changes. Consider 
an input-state-output model (1), (2) in the input-
output form  
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Multiplying both parts of the equation (4) by or 

)( β+p , we obtain    
**
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where 0>β  and 
 

u
pa

pbpu
)(

)()( β+
= , (6) 

where vector , 

, ,  and the 

parameter  is unknown. 
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Note that construction an observer based on 
measurements of the variable  for the 
system (11), (12) is quite complicated. The 
difficulties are caused by immeasurability of the state 
variable vector , and the fact that 

the parameter  is undefined. We will 
transform model (11), (12) into one convenient for 
the synthesis of the observer. We introduce a matrix 
coordinate transformation 
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where the matrix , ,  is 
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It is known (Bobtsov and Lyamin, 2000; Bobtsov et 
al., 2002), that for non-singular matrix 

 there is the coordinate 

transformation  which turns the system (11) 
into an equivalent model of the following kind 

[ ]321 kkkk T = ,  is an estimation of the 
unknown parameter 
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and the parametric error 
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Thus, model (14), (15) can be used as generator of 
the biased sinusoidal 
disturbance

Differentiating the equation (20), we obtain 
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xduxdxdxA −−−= 220 ˆ~~~ θθ2k 3k θ  the matrix of coordinate 
transformation  is non-singular. To do it, we will 
insert the corresponding components into the 
equation (13) and we will find a determinant of the 
matrix T  
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Let us choose , then the 
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where the closed-loop system matrix is 
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Let us assume that an algorithm of the estimation of 
unknown parameter θ  is the following: 
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It is obvious that  with any strictly positive 
, ,  and 

0det ≠T Then differentiating the parametric error (21), we 
obtain 1k 2k 3k θ . 
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2=−= θθθ &&&Now we will start synthesizing the observer of the 
biased sinusoidal disturbance . We will present 
the estimation algorithm as 
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As it is known from the classical theory of adaptive 
systems (Fomin et al., 1981; Landau, 1979; Narendra 
and Annaswamy, 1989), the equilibrium  of the 
system (23), (25) is asymptotically stable if the 
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transfer function  is strictly 
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00 >α,  and ∞<<−∞ ω 0>θ . It is now easy to 

show that  for all 

Thus, for condition (10) it is necessary that the 
equilibrium position 0~ =x  is asymptotically stable, 
which in turn is feasible with strictly positive real of 
the transfer function . 
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Proof. First we will show that with 00 >α  the 

following is a Hurwitz matrix. To 
do it, we will consider Hurwitz’ stability criterion, 
which for a third-order system looks like this: 

T
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3. COMPENSATION OF DISTURBANCE 
 
Let us consider the modified equation of the plant of 
type (8) 
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From the equation (27) it is easy to see that  
tends to zero if the control 
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But the control wu −=  is an ideal situation; in 
reality we deal with wu )−=  and with the unknown 
w~ . Because the observer (16), (17), (24) makes an 
estimation of the disturbance  with )()(ˆ twtw →

∞→t it is reasonable to choose the compensatory 
control as follows 
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Then the equation (27) will become 
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However, due the conditions of the problem 
statement the disturbance  is not measured, and, 
hence, 
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)(~ tw  is not known, the observer (16), (17), 

(24) can not be achieved. We will build an 
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reject a biased sinusoidal disturbance with unknown 
bias, phase, amplitude and frequency in a known 
linear, asymptotically stable system. This approach 
developed result (Marino et al., 2003) in the 
following way  
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From the expression (34) we have an achievable 
scheme for estimation of parameter  
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lower bound of 

θ̂
ω  is known);  

⎪⎩

⎪
⎨
⎧

−=

+−=

.ˆˆ
,ˆˆ

2

32

yxk

yxkyxk

a

aa

ηθ

βη& • the structure of the regulator is simple 
compared with that in (Marino  et al., 2003);   (35) 

• the order of the regulator is , which is 
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2003), the order of the regulator in (Marino  et 
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Thus the achievable observance scheme is presented 
in the equations (31), (35).   .  62 +n 

  
 4. EXAMPLE 
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where 3=β  and the estimation algorithm in the 
following  

  
Fig. 1. Transients in control system (36) – (40) for 

variable . )(ty



 

 
 
Fig. 2. Transients in control system (36) – (40) for 

variable . )(ˆ tθ
 

 
 
Fig. 3. Transients in control system (36) – (40) for 

variable . )(tu
 

 
 
Fig. 4. Transients in control system (36) – (40) for 
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