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Abstract: This paper considers a general multistage assembly system operating on a make 
to order basis with stochastic manufacturing lead-times. The objective is to design optimal 
planned lead-times by minimising the expected sum of inventory holding costs and 
tardiness cost. A perturbation analysis based stochastic approximation (PASA) procedure 
and a Simulated Annealing (SA) method are developed to solve this problem. Compared 
with the deterministic backward scheduling, the PASA and SA can reduce the costs 
significantly. The PASA achieves the similar cost to the SA with substantially less CPU 
time. Case studies using industrial data are given to demonstrate the results. Copyright © 
2005 IFAC 
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1. INTRODUCTION 
 
Setting appropriate lead-times is an important 
problem for the control of manufacturing systems 
with uncertainties, particularly for multistage 
assembly systems, where late arrival of an item may 
delay the production of subsequent assembly while 
early arrival may incur holding cost. This effect is 
cumulative and interacting along the product 
structure. Manufacturing lead-time is defined as ‘ the 
time taken from the time production is authorised, to 
the time it is completed and the material is available 
for use to fill demand by the customer or the next 
stage’  (Karmarkar, 1993). In multistage production 
environments, the manufacturing lead-time can be 
separated by stages. This paper assumes that the 
manufacturing lead-time is assigned to each operation 
activity and the lead-time of an operation has the 
same mean of this operation’s processing time. 

Two types of contingencies, i.e. safety lead-time and 
safety stock, are often used to offset the effects of 
uncertainty. The term safety lead-time refers to the 
difference between the planned lead-time and the 
average lead-time. It has been identified that safety 
lead-time is preferable to safety stock when timing is 
uncertain (Whybark and Williams, 1976). Especially, 
in make to order systems, where final products are 
highly customised, safety stock is always unrealistic. 
 
The problem of setting safety lead-times to buffer 
against the uncertainty in material procurement was 
studied by Hopp and Spearman (1993), Chu, et al. 
(1993) and Shore (1995). They considered multiple 
component assembly systems, where the component 
purchased times were stochastic and the assembly 
production starting time was fixed. The objective was 
to find the optimal safety lead-times for each 
component (which implied the optimal order instants 



of the components) so that the total cost was 
minimised. Their models were equivalent to a 
simplified two-stage assembly system where no 
decision was made for the assembly stage.  
 
Setting planned lead-times or activity start times in 
the situations with stochastic processing times was 
reported in Yano (1987a,b), Gong et al. (1994), 
Matsuura et al. (1996), Molinder (1997), Hasan and 
Spearman (1999), Song et al. (2001) and Elmaghraby 
et al. (2000). However, the majority of the above 
research is limited to relative simple environments 
such as one or two stage assembly systems (Yano, 
1987a), serial production line (Yano, 1987b, Gong et 
al., 1994), non-assembly job shop (Matsuura and 
Tsubone, 1993, Matsuura et al., 1996, Hasan and 
Spearman, 1999, Emaghraby et al., 2000). 
 
This paper considers general multistage assembly 
systems operating on a make to order basis with 
stochastic processing times. The objective is to 
design optimal planned lead-times for activities by 
minimising the expected sum of work-in-progress 
holding costs, product earliness and tardiness costs. 
Different from Song et al. (2001), which focused on 
allocation of resources over time on a given sequence 
of operations, here the resource constraints are not 
considered due to the fact that the resource capacity 
requirements are often derived based on the planned 
lead-times. A Perturbation Analysis Stochastic 
Approximation (PASA) procedure and a Simulated 
Annealing (SA) method are described to solve this 
problem. Ten case studies using industrial data from 
a make-to-order company are performed. Compared 
with backward scheduling method based on mean 
data (i.e. zero safety lead-times at each stage), both 
PASA and SA can reduce the costs significantly. The 
PASA can achieve very similar costs at substantially 
less CPU time compared with the SA method.  
 
The rest of the paper is organised as follows. In the 
next section, the problem is formulated and notation 
is defined. In section 3, a Perturbation Analysis 
algorithm is developed to estimate the gradient of the 
system performance measure with respect to the 
planned start lead-times and this estimator is shown 
to be unbiased. In section 4, a Stochastic 
Approximation procedure based on PA gradient 
estimator is described. In section 5, a Simulated 
Annealing algorithm is presented. Case studies are 
given in section 6 and conclusions are made in 
section 7. 
 
 
2. PROBLEM FORMULATION AND NOTATION 

DEFINITIONS 
 
The model used here is a generic multistage 
production environment operating on a make to order 
basis. The production starts after receiving a 

customer order. The customer order is assumed to be 
composed of a single product type and a specified 
due date. There is no initial work-in-progress in the 
system. To produce a product, it involves multiple 
stages of manufacturing and assembling. This can be 
represented by a tree-type product structure, where 
the root node represents the final product and the leaf 
nodes represents the components. The final product is 
denoted by code 1. For example, figure 1 shows a 
system with five components (code 6, 7, 8, 9, 10) and 
five assemblies (code 5, 4, 3, 2, 1). To simplify the 
narrative, each node is termed a part. 
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Fig. 1. A multistage assembly system 
 
It is assumed that each part has only one operation 
activity. The operation processing times are 
stochastic and can be described by independent 
continuous random variables. The operation lead-
time and processing time are used interchangeably in 
this paper. It is assumed that machines are available 
after the corresponding parts’  planned start lead-times 
(i.e. planed processing start times). This treatment is 
reasonable since resource requirements are often 
derived based on the planned lead-times.  
 
The part dispatching scheme can be described as 
follows. A part is dispatched at its planned start lead-
time if all its subassemblies have been finished before 
the planned start lead-time. Otherwise, it is 
dispatched immediately at the latest completion time 
of its subassemblies. There are several reasons for 
setting planned start lead-times. Firstly, they provide 
a rough plan for the operation activities and form a 
basis for resource requirement planning. Secondly, 
starting operation activities as soon as possible may 
result in earliness (holding) cost at downstream stages 
which is much more expensive than those at upstream 
stages. Thirdly, setting a planned start lead-time for 
each operation activity may reduce the variability of 
the total production lead-time and the system 
variability. Notation is defined as follows. 
d – the due date of the product; 
hi – holding cost per time unit for part i; 
h- – tardiness penalty per time unit for the product; 
ρ(i) – the immediately successive part of part i in the 

product structure; 
Xi – planned lead-time for part i; 
xi – actual lead-time for part i; it is a random variable; 
si – planned start lead-time for part i; 
ai – actual start lead-time for part i; 
ci – actual processing completion time for part i; 
N – total number of parts in the product structure. 



Throughout this paper, define ρ(1):=0 and s0:=d. 
Note that Xi=sρ(i) - si for i=N, N-1, ..., 1, therefore, 
designing the planned lead-times is equivalent to 
designing the planned start lead-times. To describe 
the detailed relationships between an assembly part 
and its subassemblies, additional notations are 
required. For part i, let ni be the number of its 
subassemblies and i(1), i(2), …, i(ni) denote its 
subassemblies respectively. Clearly, if part i is a 
component, then ni = 0 because each component has 
no subassembly. For the system shown in figure 1, 
n1=3, 1(1)=2, 1(2)=3, 1(3)=4; n2 =1, 2(1)=5 and ρ(2) 
=1. 
 
The actual processing start time of a part is the 
maximum of its planned start lead-time and all the 
actual completion times of its subassemblies. Hence, 
the relationships of planned start lead-times, actual 
start lead-times and actual completion times can be 
described by  
 ai = max(si, ci(1), ci(2), …, ci ni( ) ) for i=N, …, 1, 0  (1) 

 ci = ai + xi for i=N, N-1, …, 1. (2) 
The objective is to find the optimal production plan 
{ si, i=1,2, …, N}  by minimising the following 
expected cost function 

J(s) = E [�
=

N

i
ih

2

(aρ(i) - ci) + h1max(0, s0 - c1) 

 + h- max(0, c1 – s0)] (3) 
where s:=(sN, sN-1, ..., s1)

T. The first term of the right 
hand side (RHS) of (3) represents the holding costs of 
work-in-progress, the second and the last terms 
represent the product earliness and tardiness costs 
respectively.  
 
This is a standard stochastic optimisation problem 
and could be solved by either stochastic 
approximation or random search method. The key 
step in using stochastic approximation is to find the 
effective gradient estimate of the cost function with 
respect to decision parameters. This can be fulfilled 
by a Perturbation Analysis algorithm which is 
developed in the next section. 
 
 

3. PERTURBATION ANALYSIS GRADIENT 
ESTIMATOR AND ITS UNBIASEDNESS 

 
Perturbation analysis (PA) technique was well 
addressed in Ho and Cao(1991) and 
Glasserman(1991). The idea is to take advantage of 
the structure and real variable nature of the problem, 
from a single simulation run or experiment to derive 
as much information as possible, in terms of the 
gradient information of the objective function with 
respect to each parameter.  However, the availability 
of PA technique depends on the unbiasedness of the 
gradient estimator.  
 

Let ω denote a sample process of the system with 
certain predetermined parameters { sN, sN-1, ..., s1} . Let 
L(s, ω) denote the sample cost function, that is 

L(s, ω) =�
=

N

i
ih

2

(aρ(i) - ci) + h1max(0, s0 - c1) 

 + h- max(0, c1 – s0) (4) 
Clearly, J(s) = EL(s, ω). The sample realisation under 
{ sN, sN-1, ..., s1}  is called nominal path (NP); and the 
sample realisation under { sN, sN-1, ..., si+1, si+∆, si-1, 
…, s1}  is called perturbed path (PP), where ∆ is a 
sufficiently small positive number. Let { aj}  and { cj}  
represent the nominal path and { aj

i}  and { cj
i}  

represent the perturbed path with si+∆. 
 
Let ζi denote the part code string of the path from 
part i to final product 1. For example, ζi ={ i, l, m, …, 
1}  represents that l =ρ(i), m =ρ(l), and so on. Because 
the product structure is of tree-type, the last part must 
be 1 in every part-path string. Define 
• κ(i) = the first part code in string ζi whose 

completion time is less than its successive part’s 
actual processing start time. Define κ(i) = 0, if 
every part in string ζi satisfies that its completion 
time is equal to its successive part’s actual 
processing start time and c1=a0. 

 
The perturbation rules can be summarised by 
presenting the relationships of { aj, cj}  with { aj

i, cj
i} . 

Proposition 1. If there is a sufficient small 
perturbation ∆ on part i with ai

 = si, and ζi ={ i, l, m, 
…, r, κ(i), …, 1} , then: aj

i= aj+∆, cj
i = cj+∆ for j∈{ i, 

l, m, …, r, κ(i)}  and aj
i= aj, cj

i = cj for j∉{ i, l, m, …, 
r, κ(i)} . On the other hand, if ai

 > si, then the NP and 
PP overlap. 
 
Theorem 1. Suppose ζi ={ i, l, m, …, r, κ(i), …, 1} . 
The gradient of the sample cost function is given by 
(i) if i is a component, then ∂L(s, ω)/∂si= (hl(1) + hl(2) + 
… + hl nl( ) – hi ) + (hm(1) + hm(2) + … + hm nm( )  – hl ) + 

… + (hκ(i)(1) + hκ(i)(2) + … + ))(( )( inih
κκ  – hr ) - 

hκ(i)⋅I{ κ(i)>0}  + h-⋅I{ κ(i)=0} ; 
(ii) if i is not a component  and ai

 = si, then ∂L(s, 
ω)/∂si = (hi(1) + hi(2) + … + hi ni( ) ) + (hl(1) + hl(2) + … 

+hl nl( ) – hi ) + (hm(1) + hm(2) + … + hm nm( )  – hl ) + … 

+ (hκ(i)(1) + hκ(i)(2) + … + ))(( )( inih
κκ  – hr ) - 

hκ(i)⋅I{ κ(i)>0}  + h-⋅I{ κ(i)=0} ; 
(iii) if i is not a component and ai

 > si, then ∂L(s, 
ω)/∂si = 0. 
where κ(i)(nκ(i)) is the (nκ(i))th subassembly of part 
κ(i), and I{ .}  is the indicator function, which takes 1 
if { .}  is true, otherwise takes 0. 
 
The gradient information of the sample cost function 
given in theorem 1 is an unbiased estimator of the 
gradient of the cost function (3). That is, 



Theorem 2. Let J(s) be defined in (3) and  ∂L(s, 
ω)/∂si be given in theorem 1, then: E∂L(s, ω)/∂si = 
∂J(s)/∂si  and E |∂L(s, ω)/∂si| < +∞,  for i=N, N-1, …, 
1. 
Proof: Define Ω0={ ω | ∃ i∈{ N, N-1, …, 1}  s.t. si = 
max(ci(1), ci(2), …, ci ni( ) )} . That is, Ω0 is a set of all 

sample processes in which there exists at least one 
part whose planned start lead-time equals the latest 
completion time of its subassemblies. Since all 
processing times are independent continuous random 
variables, it yields Prob{ ω | ω∈Ω0} =0. Then with the 
similar arguments in Song et al. (2001), the assertion 
is true. 
 
 
4. STOCHASTIC APPROXIMATION BASED ON 

PERTURBATION ANALYSIS 
 
This section describes a stochastic approximation 
algorithm to find the optimal planned start lead-times 
by minimising the cost function J(s). The general 
form of stochastic approximation (Rubinstein, 1992) 
is:  

 sn+1=sn - γn ⋅∇Jn (5) 
where sn is the parameter vector at the beginning of 

iteration n, ∇Jn is an estimator of ∇J(sn) (where ∇
J(sn) := (∂J(sn)/∂sN, ∂J(sn)/∂sN-1, …, ∂J(sn)/∂s1)

T), γn is 
a positive sequence of step sizes such that (a) it 

decreases to zero; (b) the sum of all the sequence { γ
n}  is infinite and (c) the sum of its squares is 
bounded. Typically, the harmonic sequence 1/n 

satisfies all above assumptions for γn. When ∇Jn is 

an unbiased estimator of ∇J(sn), (5) is called a 
Robbins-Monro (RM) algorithm and when a finite 
difference estimator is used, it is called a Kiefer-
Wolfowitz (KW) algorithm. The RM algorithm has 
faster convergence rates than the KW algorithm (Fu 
and Hu, 1997). Since theorem 1 provides an unbiased 
gradient estimator, the equation (5) yields an RM 
algorithm. 
 
The Perturbation Analysis Stochastic Approximation 
(PASA) algorithm consists of six steps: 
Step 1. Set initialise s0, the maximum number of 

iterations n and initial iteration loop n=0. 

Step 2. Set the step size γn. 
Step 3. For a given solution sn, run K sample 

processes to calculate the gradient estimator by 

Perturbation Analysis: ∇Jn = ([�k∂L(s, ωk)/∂
sN]/K …, [�k∂L(s, ωk)/∂s1]/K)T. 

Step 4. Calculate a new solution  sn+1=sn - γn ⋅∇Jn. 
Step 5. Adjust the solution sn+1 to meet the part 

precedence constraints and make its elements 
non-negative. 

Step 6. If n < n, set n=n+1 and go to Step 2; 
otherwise return sn as the optimal planned start 
lead-time vector. 

In this paper, the step size is chosen by γn=1/vn, 
where vn is the number of times the gradient changed 
signs. This choice has been found to perform 
satisfactorily in stochastic approximation (Hasan and 
Spearman, 1999). In addition, by the Large Number 

Law and Theorem 2, it is clear that 
∞→K

lim [�k∂L(s, ω

k)/∂si]/K = ∂J(s)/∂si  almost surely. Therefore, if K is 

appropriately large, the gradient estimator ∇Jn is 
accurate enough. 
 
For the multistage assembly systems, it is very 
difficult to obtain either analytical optimal solutions 
or tight lower bounds. To demonstrate the 
effectiveness of the PASA procedure, a random 
search method, Simulated Annealing, is applied to 
make comparison.  
 
 

5. SIMULATED ANNEALING METHOD 
 
Simulated Annealing (SA) is a technique that has 
been regarded as suitable for optimisation problems 
of large scale (Kirkpatrick et al., 1983, Aarts and 
Korst, 1989). There are two kinds of loops involved 
within SA procedure. In the outer loop, the 
temperature (T) cools until the ground state T=0 is 
reached. In the inner loop, for fixed temperature T the 
equilibrium state is found (i.e. no further 
improvement is achieved). This is done as follows. At 
each step a neighbour to the current solution is 
generated at random. If the objective function 
associated with the neighbour is better (i.e. Jnew≤Jold) 
it is accepted as the starting point of the next step. 
Otherwise, it is accepted with a probability (which 
equals exp[(Jold-Jnew)/T]). 
 
In the situation under consideration, the solution is 
characterised by a real vector s. Therefore, the 
neighbourhood of a solution can be obtained by 
making changes to the elements of s. The SA 
algorithm can be tailored to tackle the numerical 
optimisation problem in stochastic situations by 
appropriately modifying the cost function evaluation 
step, e.g. the cost function can be evaluated by 
averaging over K sample processes.  
 
The notation used in the SA algorithm is defined as 
follows. Let s0 denote the initial solution vector; T0 
denote the initial temperature; γ0 denote the initial 
width for the step sizes for variation of the solution; α 
denote the temperature cooling and step size 
reduction factor. Termination rules are defined as 
follows. Let NI (NO) denote the maximum number of 
consecutive inner (outer) loop trials in which no 
improvement is achieved for the cost function. Let n 
be the maximum number for outer loop trials. The 
inner loop search will be terminated if no 
improvement is achieved during consecutive NI inner 
loop trials. The whole procedure will be terminated if 



no improvement is achieved during consecutive NO 
outer loop trials or the total outer loop trials exceeds 
n. The SA algorithm to optimise planned start lead-
times consists of seven steps. 
  
Step 1. Set initial s0, T0, α, γ0, NI, NO, n, s*=s′=s0, 

n*=0 and n=0, where s* is the optimal solution up 
to now; s′ is a temporal vector used in the inner 
loop; n* denotes the outer loop in which the 
optimal solution up to now is achieved. 

Step 2. Set l=1 and NI=0, where NI denotes the 
number of consecutive inner loop trials in which 
no improvement is achieved for the cost function. 

Step 3.  
(i) Set s(n,l) = s′ + γn⋅z, where each element of z 

follows a uniform distribution, i.e. zi ~ U(-
1/2,1/2). 

(ii) Adjust the solution to meet the precedence 
constraints and to be non-negative. 

(iii) For fixed parameter s(n,l), run K sample processes 
to calculate the average cost function J(s(n,l)) := 
�j=1

KL(s(n,l), ωj)/K. 
(iv) If J(s(n,l)) < J(s*), set NI=0, n*=n and s*= s(n,l); 

otherwise, set NI=NI+1. 
(v) If J(s(n,l)) < J(s′), set s′ = s(n,l); otherwise, draw a 

uniform random number χ~ U(0,1) and if 
χ≤exp((J(s′) - J(s(n,l)))/Tn), set s′ = s(n,l). 

Step 4. If NI>NI, go to Step 6. 
Step 5. Set l=l+1, go to Step 3. 
Step 6. If n - n* > NO or n>n, return s* as an optimal 

planned start lead-time vector. 
Step 7. Set s′=s*, Tn+1=α⋅Tn and γn+1=α⋅γn; Set 

n=n+1 and go to Step 2. 
 
In general, random search methods, e.g. Simulated 
Annealing, Genetic Algorithms, require a large 
number of trials and cost evaluations. In stochastic 
situations, each cost evaluation needs multiple sample 
processes to do averaging. Therefore, random search 
methods could be very timing consuming to deal with 
stochastic optimisation problems. 
 
 

6. NUMERICAL EXAMPLES 
 
In this Section, ten case studies, whose data are 
obtained from a make to order company that 
manufactures capital products (Hicks, 1998), are used 
to test the effectiveness of the methods.  
 
Deterministic backward scheduling sets the planned 
start lead-times based on mean data, i.e. si = sρ(i) - µi 
starting from the final product to the components, 
where µi = E xi. Intuitively, since no safety lead-times 
are included for any activity, high tardiness penalty 
costs could be resulted due to the stochastic 
processing times. This plan is used as an initial 
solution for both PASA and SA methods.  
 

In SA algorithm, the initial control parameters, 
especially the inner loop termination parameter NI, 
the initial temperature T0 and the temperature-cooling 
rate α, may affect the search speed and solution 
accuracy. Preliminary experiment showed that both 
NI and α should not be too small. Different 
combinations of T0 and α are tested and a good pair is 
selected and used in all case studies. 
 
In each case study, a single product is produced. The 
total operation (including both machining and 
assembly) number in each case varies from 24 to 268, 
as shown in table 1. All processing times are assumed 
to be normally distributed. The mean processing 
times are obtained from the company and the 
standard deviation is assumed to be the 
corresponding mean multiplied by 0.2. This 
assumption is reasonable since in reality larger 
processing times often have larger variability. The 
holding cost of a part is proportional to the sum of 
mean processing times on this part and on all the 
previous parts within its branch. This reflects the fact 
that holding costs increase with added value and time. 
The product tardiness penalty coefficient is twice the 
product earliness penalty coefficient. The product due 
date is 500 days.  
 

Table 1 Ten cases with different machining and 
assembly operations 

 
Case Machining Assembly  

 operations operations 
1 18 6 
2 34 5 
3 46 6 
4 56 6 
5 74 16 
6 102 7 
7 100 13 
8 146 20 
9 176 24 
10 229 39 

 
Table 2 Cost and CPU time (in second) for 

deterministic planning, PASA and SA methods 
 

Case Deterministic PASA  SA  
 Cost CPU(s) Cost CPU(s) Cost CPU(s) 

1 37 <1 25 4 25 128 
2 478 <1 271 6 269 227 
3 63 <1 26 9 27 349 
4 564 <1 326 10 327 356 
5 1894 <1 1070 15 1072 555 
6 252 <1 93 18 100 957 
7 393 <1 148 18 164 918 
8 3678 <1 1806 27 1796 1464 
9 4336 <1 2201 33 2190 2614 
10 9228 <1 4036 46 4085 2962 

 



Let K=100. The costs and CPU times (in seconds) for 
deterministic backward scheduling, PASA (with 
n=500) and SA (with T0=1.0 and α=0.95) methods 
are given in table 2. Other initial parameters in SA 
algorithm are: γ0=min{ µi, i=1, 2, …, N} , NI=100, 
NO=50 and n=200. The PASA and SA algorithms are 
written by c language and executed in SunOS 5.7 
environment with 400MHz processor.  
 
From table 2, it is found that the PASA and SA 
substantially reduce the expected total costs 
compared with the deterministic backward scheduling 
method (e.g. costs are reduced by more than 50% in 
five case studies); PASA and SA achieve very similar 
costs, but SA requires much more CPU time than the 
PASA. Particularly, as the problem complexity 
increases, the difference of CPU times between 
PASA and SA becomes larger. In addition, it can be 
derived by intuition that the difference of CPU times 
between PASA and SA will increase dreadfully as the 
number of sample processes K increases. 
 
 

7. CONCLUSION 
 
A Perturbation Analysis algorithm is first developed 
to estimate the gradient of the objective function with 
respect to the planned start lead times in stochastic 
assembly manufacturing systems. This estimator is 
shown to be unbiased. Then a Perturbation Analysis 
Stochastic Approximation (PASA) procedure is 
presented to optimise the planned lead-times. A 
Simulated Annealing (SA) method is also applied to 
solve the same problem. Ten case studies from an 
industrial make-to-order companies show that: the 
solutions from the PASA and the SA perform 
significantly better than those produced by the 
deterministic backward scheduling method; the 
PASA and the SA achieve very close performance in 
all case studies; the PASA saves substantial 
computation time compared with the SA. This reveals 
that the PASA is recommended to deal with planned 
lead-time design problems in stochastic complex 
manufacturing systems.  
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