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1. INTRODUCTION

During last decade, considerable attention has
been paid to the stabilization problem of nonlinear
systems. Among the solution methods for this
problem, receding horizon control strategies, also
known as model predictive control (MPC), have
become quite popular (see for example (Mayne, et
al., 2000; Findeisen, et al., 2003) for an overview).
Owing to the use of computers in the imple-
mentation of the controllers, the investigation
of sampled-data control systems has become an
important area of control science. An overview
and analysis of existing approaches for the sta-
bilization of sampled-data systems can be found
in (Nešić, et al., 1999; Nešić and Teel, 2004)
(see also Gyurkovics and Elaiw, 2004; Polushin
and Marquez, 2004) and the references of these
papers). Two main approaches of sampled-data
control design can be distinguished: the first one
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consists in the implementation of a continuous-
time stabilizing control law at a sufficiently high
sampling rate, while the second way is to dis-
cretize the continuous-time model and design a
stabilizing controller on the basis of the approxi-
mate discrete-time model. In recent papers (Nešić,
et al., 1999; Nešić and Teel, 2004), sufficient condi-
tions are presented which guarantee that the same
family of controllers that stabilizes the approxi-
mate discrete-time model also practically stabi-
lizes the exact discrete-time model of the plant.
These results yield a general framework for the
control design. Significant amount of work is also
devoted to the study of control design methods
which results in controllers satisfying the above
mentioned sufficient conditions (see e.g. Grüne
and Nešić 2003; Gyurkovics and Elaiw, 2004). All
of this investigations deal with the case when the
sampling rates of the control function and the
state measurement coincide i.e. a single-rate ap-
proach is presented. Moreover, the measurement
result and the corresponding controller are as-



sumed to be available instantaneously. The latter
assumption is of course unrealistic and may be
considered as one of the reasons why different
rates of control and measurement samplings have
to be taken into account: it is meaningless or im-
possible to perform a new measurement until the
results of the previous one becomes available and
worked up. Besides the measurement and com-
putational delay, the nature of the problem may
involve different measurement and control sam-
pling rate (see e.g. Elaiw and Gyurkovics, 2004).
The notion of multirate sampled-data feedback
(which was introduced to the best of our knowl-
edge by Polushin and Marquez, 2004) is used in
the present paper in this sense. Polushin and Mar-
quez addresses the design of multirate controllers
based on the knowledge of a continuous-time sta-
bilizing feedback for the exact model as well as
on that of a discrete-time stabilizing feedback for
the approximate model under the assumption of
”low measurement rate” and in the presence of
measurement delay. The computational delays in
MPC is the main issue in (Chen, et al., 2000; Find-
eisen and Allgöwer, 2004), where the proposed
approaches are based on the exact continuous time
model.

The aim of the present paper is to drive a mul-
tirate version of the receding horizon algorithm
based on discrete-time approximate models of the
plant, and establish sufficient conditions which
guarantee that the proposed control stabilizes the
original exact model in the presence of measure-
ment and computational delays. The basic idea
of handling the delays is very similar to that
of (Chen, et al., 2000; Findeisen and Allgöwer,
2004), but, in contrast to these works, the design
of the controller is based on the approximate
model in the present paper. The importance of
taking into account this fact is supported by a
series of counter-examples (see e.g. Nešić, et al.,
1999; Nešić and Teel, 2004; Gyurkovics and Elaiw,
2004), which show that it is not sufficient to re-
quire small computational errors only.

2. PRELIMINARIES AND PROBLEM
STATEMENT

2.1 The models

Consider the nonlinear control system described
by

ẋ(t) = f (x(t), u(t)) , x(0) = x0, (1)

where x(t) ∈ Rn, u(t) ∈ U ⊂ Rm, f :
Rn × U → Rn, with f(0, 0) = 0, U is closed and
0 ∈ U . We shall assume that f is continuous and
for any pair of positive numbers (∆′,∆′′) there
exists an Lf = Lf (∆′,∆′′) such that

‖f(x, u) − f(y, u)‖ ≤ Lf‖x − y‖,

for all x, y ∈ B∆′ and u ∈ B∆′′ . Let Γ⊂ Rn be
a given compact set containing the origin and
consisting of all initial states to be taken into
account. The system is to be controlled digitally
using piecewise constant control functions u(t) =
u(iT ) =: ui, if t ∈ [iT, (i + 1)T ), i ∈ N, where
T > 0 is the control sampling period which is
assumed to be fixed. Under the conditions on f,
for any x ∈ B∆′ and u ∈ B∆′′ there exists an ω =
ω(x, u) > 0 such that equation (1) with u(t) ≡ u,
(t ∈ [0, ω)) and initial condition x(0) = x has a
unique solution on [0, ω) denoted by φE(., x, u).
Then, the exact discrete-time model of the system
can be defined as

xE
i+1 = FE

T (xE
i , ui), i = 0, 1, ... (2)

where FE
T (x, u) := φE(T ;x, u), if T < ω(x, u)

otherwise FE
T (x, u) is defined to be an arbitrary

element of Rn with sufficiently large norm. (A
discussion about the case of finite escapes can be
found e.g. in (Nešić, et al., 1999).) We emphasize
that FE

T in (2) is not known in most cases,
therefore the controller design can be carried out
by means of an approximate discrete-time model

xA
i+1 = FA

T,h

(
xA

i , ui

)
, i = 0, 1, ..., (3)

where T is again the control sampling period,
while parameter h refers to certain modeling pa-
rameters connected typically with the underlying
numerical method: FA

T,h is derived by the multi-
ple application of some numerical scheme (e.g. a
Runge-Kutta formula) with step sizes hi

0, ..., h
i
mi

,
where 0 < hi

k ≤ h and hi
0 + ...+hi

mi
= T . In what

follows, we shall refer to such a subdivision by h,
for simplicity. For the solutions of (2) and (3) with
the control sequence u = {u0, u1, ...} satisfying
the initial conditions xE

0 = x′ and xA
0 = x′′ we

shall use the notation φE
i (x′,u) and φA

i (x′′,u),
respectively.

Assumption A1 FA
T,h (0, 0) = 0, FA

T,h is contin-
uous in both variables uniformly in small h, and
it satisfies a local Lipschitz condition: there is a
h∗ > 0 such that for any pair of positive numbers
(∆′,∆′′) there exists LF A > 0 such that

‖FA
T,h(x, u) − FA

T,h(y, u)‖ ≤ eL
F AT ‖x − y‖,

holds for all u ∈ B∆′′ , x, y ∈ B∆′ and h ∈ (0, h∗].

The use of (3) in control design will result in
controllers, which depend on the parameters char-
acterized by h. Let Uh denote a family of con-
trol sequence parameterized by h: uh ∈ Uh if
uh = {uh

0 , uh
1 , ... } and uh

i ∈ U , i = 0, 1, ... .

Definition 1 System (2) is practically asymptot-
ically controllable (PAC) from Ω ⊂ Rn to the



origin with the parametrized family Uh, if there
exist a β(., .) ∈ KL and a continuous, positive and
nondecreasing function σ(.) which are indepen-
dent of h, and such that for any r > 0 there exists
a h∗ > 0 so that for all x ∈ Ω and for all h ∈ (0, h∗]
there exists a control sequence uh(x) ∈ Uh, such
that

∥∥uh
i (x)

∥∥ ≤ σ(‖x‖), and the corresponding
solution φE of (2) satisfies the inequality
∥∥φE

i (x,uh(x))
∥∥ ≤ max {β(‖x‖ , iT ), r} , i ∈ N.

Assumption A2 There exists h∗ > 0 such that
the exact discrete-time model (2) is PAC from a
set Ω ⊃ Γ to the origin with Uh for all h ∈ (0, h∗].

Remark 1 Observe that Assumption A2 implies
that for any x ∈ Ω there exists a control function
uh(x) ∈ Uh for which no finite escape time occurs.

To investigate the stability behavior of the exact
model with a controller designed to stabilize the
approximate model we need an assumption de-
scribing the ”closeness” of these two models.

Assumption A3 Let T be given. For any ∆′ > 0
and ∆′′ > 0 there exist γ ∈ K and h∗ > 0 such
that

∥∥FA
T,h(x, u) − FE

T (x, u)
∥∥ ≤ Tγ(h), (4)

for all (x, u) ∈ B∆′ × B∆′′ , and h ∈ (0, h∗].

In this paper we address the problem of state feed-
back stabilization of (2) under ”low measurement
rate” in the presence of measurement and compu-
tational delays. More precisely, we shall assume
that state measurements can be performed at the
time instants jTm, j = 0, 1, ... :

yj := x(jTm), j = 0, 1, ... .

The result of the measurement yj becomes avail-
able for the computation of the controller at
jTm + τ1(> jTm), while the computation re-
quires τ2 > 0 length of time i.e. the (re)computed
controller is available at T ∗

j := jTm + τ1 + τ2,
j = 0, 1, ... . We assume that τ1 = ℓ1T, τ2 = ℓ2T
and Tm = ℓT for some integers ℓ1 ≥ 0, ℓ2 ≥ 0 and
ℓ ≥ ℓ1 + ℓ2 =: ℓ.

Because of the measurement and computational
delays, on the time interval [0, τ1 + τ2) a pre-
computed control function uc can only be used.
It is reasonable or assume that initial states can
be kept within the PAC domain of the exact
system with such a precomputed controller. More
precisely:

Assumption A4 There exists a ∆0 > 0, and a
control sequence uc = {uc

0, ..., u
c

ℓ−1
} with uc

i ∈

U can be given so that φE
k (x,uc) ∈ Ω ∩ B∆0

,
φA

k (x,uc) ∈ Ω ∩ B∆0
, k = 0, 1, ..., ℓ for all x ∈ Γ.

Furthermore, a ”new” controller computed ac-
cording to the measurement yj = x(jTm) will

only be available from jTm+ℓT , in the time inter-
val [jTm, jTm+ℓT ), the ”old” controller has to be
applied. Since the corresponding exact trajectory
is unknown, an approximation ζA

j to the exact

state x
(
jTm + ℓT

)
can only be used which can be

defined as follows. Assume that a control sequence{
u0

(
ζA
j−1

)
, ..., uℓ−1

(
ζA
j−1

)}
has been defined for

j ≥ 1. Let

vp
(
ζA
j−1

)
=

{
u

ℓ−ℓ

(
ζA
j−1

)
, ..., uℓ−1

(
ζA
j−1

)}

and define ζA
j by

ζA
j = FA

ℓ

(
yj ,v

p
(
ζA
j−1

))
, ζA

0 = φA

ℓ
(x,uc),

where FA

ℓ

(
y, {u0, ..., uℓ−1}

)
=

FA
T,h

(
...FA

T,h

(
FA

T,h (y, u0) , u1

)
..., u

ℓ−1

)
.

In the stability analysis of the exact discrete-
time model in the case of multirate sampling with
delays outlined above, the following ℓ-step exact
discrete-time model plays an important role: let

v(j) =
{

u
(j)
0 , ..., u

(j)
ℓ−1

}
and let

ξE
j+1 = FE

ℓ (ξE
j ,v(j)), ξE

0 = φE

ℓ
(x,uc), (5)

where FE
ℓ (ξE

j ,v) = φE
ℓ (ξE

j ,v).

Our aim is to solve the following problem: for
given T , Tm, τ1 and τ2 find a control strategy

vℓ,h : Γ̃ → U × U × ... × U︸ ︷︷ ︸
ℓ times

vℓ,h(x) = {u0(x), ..., uℓ−1(x)} ,

using the approximate model (3) which stabilizes
the origin for the exact system (2) in an appropri-

ate sense, where Γ̃ is a suitable set containing at
least Ω ∩ B∆0

.

2.2 An optimization problem

In order to find a suitable controller v, we shall
apply a multistep version of the receding horizon
method. To do so, we shall consider the following
optimal control problem.

Let 0 < N ∈ N be given. Let (3) be subject to
the cost function

JT,h(N,x,u) =

N−1∑

k=0

T lh(xA
k , uk) + g(xA

N ),

where u = {u0, u1, ..., uN−1} , xA
k = φA

k (x,u), k =
0, 1, ..., N , denote the solution of (3), lh and g
are given functions, satisfying assumptions to be
formulated later.



Consider the optimization problem

PA
T,h(N,x) : min {JT,h(N,x,u) : uk ∈ U} .

If this optimization problem has a solution de-
noted by u∗ =

{
u∗

0, ..., u
∗

N−1

}
, then the first ℓ

elements of u∗ are applied at the state x i.e.,

vℓ,h(x) =
{
u∗

0(x), ..., u∗

ℓ−1(x)
}

The optimization problem PA
T,h will be investi-

gated under the following conditions imposed on
the choice of the stage and the terminal cost
functions.

Assumption A5 (i) g is continuous, positive
definite, and for any ∆′ there exists a constant
Lg = Lg(∆

′) > 0 such that |g(x) − g(y)| ≤
Lg‖x − y‖ for all x ∈ B∆′ .

(ii) lh is continuous with respect to x and u,
uniformly in small h, and for any ∆′ > 0, ∆′′ > 0
there exist h∗ > 0 and Ll = Ll(∆

′,∆′′) > 0
such that |lh(x, u) − lh(y, u)| ≤ Ll‖x − y‖ for all
h ∈ (0, h∗], x, y ∈ B∆′ and u ∈ B∆′′ .

(iii) There exist a h∗ > 0 and two class-K∞

functions ϕ1 and ϕ2 such that the inequality

ϕ1(‖x‖) + ϕ1(‖u‖)≤ lh(x, u) ≤

ϕ2(‖x‖) + ϕ2(‖u‖),

holds for all x ∈ Rn, u ∈ U and h ∈ (0, h∗].

Let ∆0 > 0 be given in Assumption A4, let β(., .)
and σ(.) be functions generated by Assumption
A2 and let ∆1 be such that ∆1 ≥ 1 + β(∆0, 0).
Moreover, for 0 < ρ ≤ ∆1, we introduce the
notation Uρ = U ∩ Bσ(ρ).

The terminal cost function g and/or a terminal
constraint set given explicitly or implicitly play
crucial role in establishing the desired stabilizing
property. We shall assume that g is chosen accord-
ing to the following assumption.

Assumption A6 There exist h∗ > 0 and η >
0 such that for all x ∈ Gη = {x : g(x) ≤ η}
there exists a κ(x) ∈ Uρ0

(which may depend on
parameter h) such that inequality

T lh(x, κ(x)) + g
(
FA

T,h(x, κ(x))
)
≤ g(x) (6)

holds true for all h ∈ (0, h∗], where ρ0 is such that
Gη ⊂ Bρ0

.

Without loss of generality, we may assume that
Gη ⊂ Ω ∩ B∆1

. For any N > 0 and x ∈ Rn, let

VN (x) = inf {JT,h(N,x,u) : uk ∈ U} ,

if the right hand side is finite, and let VN (x) = ∞
otherwise. (Evidently, function VN depends also
on the on the parameter h, but, for simplicity, this

dependence is not reflected in the notation.) Let
h∗

0 denote the minimum of the values h∗ generated
by Assumptions A1-A3 and A5-A6 with ∆′ = ∆1

and ∆′′ = σ(∆1). Then, from Assumptions A1-
A6, it follows immediately that for any x ∈ Ω ∩
B∆1

and h ∈ (0, h∗

0], PA
T,h(N,x) has a solution

u∗(x), function VN (.) is positive definite and con-
tinuous uniformly in small h.

With argumentations standard in receding hori-
zon literature one can prove the following lemma.

Lemma 1 Suppose that Assumptions A1, A5 and
A6 hold true. Then for any N ≥ 1 the following
statements are valid:

(i) For any x0 ∈ Gη, VN (x0) ≤ g(x0) and
φA

N (x0,u
∗(x0)) ∈ Gη.

(ii) If φA
N (x0,u

∗(x0)) ∈ Gη for some x0 ∈ Rn, then
V

N
(x0) ≤ VN (x0) for all N ≥ N , and

VN (FA
T,h(x0, u

∗

0(x0))) − VN (x0)

≤ −T lh(x0, u
∗

0(x0)).

(iii) If for some x0 ∈ Rn and for some k ∈
N, 0 ≤ k < N , φA

k (x0,u
∗(x0)) ∈ Gη, then

φA
N (x0,u

∗(x0)) ∈ Gη.

Lemma 2 If Assumptions A2, A3, A5 and A6
hold true, then there exist a h∗

1 with 0 < h∗

1 ≤ h∗

0,
and a T ∗

1 > 0 and for all x ∈ Ω ∩ B∆1
and for

all h ∈ (0, h∗

1] there exists a ũ(x) ∈ Uh with
‖ũi(x)‖ ≤ σ(‖x‖) such that

∥∥φA
k (x, ũ(x))

∥∥ ≤ β(∆0, 0) + 1,

and φA
k (x, ũ(x)) ∈ Gη if k ≥ N1 where N1 is such

that T ∗

1 ≤ N1T ≤ T ∗

1 + T . Moreover there exists
a constant V A

max > 0 such that VN (x) ≤ V A
max for

all x ∈ Ω ∩ B∆0
and for all N ≥ 1.

The proof is omitted because of the lack of space.

Let Γmax =
{
x ∈ Rn : VN(x) ≤ VA

max

}
. Obvi-

ously, Γ ⊂ Ω ∩ B∆0
⊂ Γmax.

Lemma 3 If Assumptions A1-A6 hold true, then
there exist two class-K∞ functions σ1 and σ2,
and constants M > 0 and ∆̃ > 0 which are
independent of N and h such that

σ1(‖x‖) ≤ VN (x) ≤ σ2(‖x‖), (7)

‖u∗

k(x)‖ ≤ M,
∥∥φA

k (x,u∗(x))
∥∥ ≤ ∆̃

k = 0, 1, ..., N−1, for all x ∈ Γmax and h ∈ (0, h∗

1].

The proof is omitted because of the lack of space.

Lemma 4 Suppose that Assumptions A1-A6 hold
true. Let x ∈ Γmax be arbitrary and let ρ1 > 0 be
such that Bρ1

⊂ Gη. If h ∈ (0, h∗

1], and N ∈ N is
chosen so that

TN > T ∗

2 :=
V A

max − η

ϕ1(ρ1)
, (8)



then φA
N (x,u∗(x)) ∈ Gη, and for all k = 1, ..., ℓ

VN

(
φA

k (x,u∗(x))
)
− VN (x) ≤ −Tϕ1(‖x‖). (9)

The proof is omitted because of the lack of space.

Lemma 5 (Gyurkovics & Elaiw 2004). Suppose
that Assumptions A1-A6 hold true. Then for any
given N ∈ N there exist h∗

2 (0 < h∗

2 ≤ h∗

1), LV > 0
and δV > 0 such that for all h ∈ (0, h∗

2], inequality
|VN (x) − VN (y)| ≤ LV ‖x − y‖ holds true for all
x, y ∈ Γmax with ‖x − y‖ ≤ δV .

3. MULTISTEP RECEDING HORIZON
CONTROL IN THE PRESENCE OF DELAYS

In this section we outline an approach to the prob-
lem how the occurring measurement and compu-
tational delays can be taken into account in the
stabilization of multi-rate sampled-data system by
receding horizon controller.

Suppose that a precomputed control sequence
uc satisfying Assumption A4 is given. Then the
following Algorithm can be proposed.

Algorithm Let N be chosen according to (8), let
j = 0, T ∗

−1 = 0 and let u(0) = u(p,0) = uc =
{uc

0, ..., u
c

ℓ−1
}. Measure the initial state y(0) = x0.

Step j. (i) Apply the controller u(j) to the exact
system over the time interval [T ∗

j−1, T
∗

j ].

ii) Predict the state of the system by using the
approximate model and let ζA

j = φA

ℓ
(y(j),u(p,j)).

iii) Find the solution u∗ = {u∗

0, ..., u
∗

N−1} to the

problem PA
T,h(N, ζA

j ), let u(j+1) = {u∗

0, ..., u
∗

ℓ−1}

and u(p,j+1) = {u∗

ℓ−ℓ
, ..., u∗

ℓ−1}.

(iv) j = j + 1.

A schematic illustration of the Algorithm is
sketched in Figure 1.

t
x
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Fig. 1. Sketch to the Algorithm.

Lemma 6 Let d > 0 and k ∈ {1, 2, ..., ℓ}
be arbitrary. Suppose that Assumptions A1-A6
are valid, N is chosen according to (8), and the
following condition is satisfied:

(C) ξE
j−1 ∈ Γmax, ζA

j−1 ∈ Γmax, and there exists

a ε1(h) ∈ K such that
∥∥ξE

j−1 − ζA
j−1

∥∥ ≤ ε1(h), if
h ∈ (0, h∗

2] (j ∈ N, j ≥ 1) with some 0 < h∗

2 ≤ h∗

1.

Then there exists a h∗

3 > 0 (independent of k)
such that for any h ∈ (0, h∗

3], inequality

max
{

VN

(
φE

k (ξE
j−1,u

(j))
)

, VN (ξE
j−1)

}
≥ d (10)

implies that

VN

(
φE

k (ξE
j−1,u

(j))
)
− VN (ξE

j−1)

≤−
T

2
ϕ1(

1

2

∥∥ξE
j−1

∥∥),

where u(j) is the optimal solution of problem
PA

T,h(N, ζA
j−1).

The proof is omitted because of the lack of space.

Corollary Under the conditions of Lemma 6 in-
equality max

{
VN

(
φE

k (ξE
j−1,u

(j))
)
, VN (ξE

j−1)
}

≥

d implies that φE
k (ξE

j−1,u
(j)) ∈ Γmax.

Theorem 1 Suppose that Assumptions A1-A6
hold true. Then there exist a T ∗ > 0 and a
β ∈ KL, and for any r0 > 0 there exists a h∗ > 0
such that for any fixed N ∈ N with NT ≥ T ∗,
h ∈ (0, h∗] and x0 ∈ Γ, the trajectory of the ℓ-step
exact discrete-time system

ξE
k+1 = FE

ℓ (ξE
k ,vℓ,h(ζA

k )), ξE
0 = φE

ℓ
(x0,u

c) (11)

with the ℓ-step receding horizon controller vℓ,h

obtained by the prediction

ζA
k+1 = FA

ℓ

(
yk+1,v

p
(
ζA
k

))
, ζA

0 = φA

ℓ
(x0,u

c) (12)

satisfies that ξE
k ∈ Γmax and

∥∥ξE
k

∥∥ ≤ max
{
β

(∥∥ξE
0

∥∥ , kTm
)
, r0

}

for all k ≥ 0. Moreover, ζA
k ∈ Γmax, as well, and

∥∥ζA
k

∥∥ ≤ max
{
β

(∥∥ζA
0

∥∥ , kTm
)

+ δ1, r0

}

where δ1 can be made arbitrarily small by suitable
choice of h.

The proof is omitted because of the lack of space.

Remark 2 From Theorem 1 and Lemma 6 it
follows that φE

k (ξE
j−1,u

(j)) converges to the ball
Br0

as j → ∞ for all k.

Remark 3 We note that the statement of The-
orem 1 is similar to the practical asymptotic sta-
bility of the closed-loop system (11)-(12) with
respect to the initial state ξE

0 , ζA
0 . This is not true

for the original initial state x0, because - due to
the initial phase - the ball Br0

is not invariant over
the time interval [0, ℓT ).



4. ILLUSTRATIVE EXAMPLE

Consider the continuous-time system (this exam-
ple is taken from Chen and Allgöwer (1998))

ẋ1 = x2 + 0.5(1 + x1)u,

ẋ2 = x1 + 0.5(1 − 4x2)u.

Let the approximate discrete-time model be de-
fined by Euler method as follows: let z0 = xA

k ,
u = uk, h = T/m and let

z1,i+1 = z1,i + h [z2,i + 0.5(1 + z1,i)u] ,

z2,i+1 = z2,i + h [z1,i + 0.5(1 − 4z2,i)u] .

i = 0, 1, ...,m − 1. Take xA
k+1 = zm. The running

and the terminal costs are given by lh(x, u) =
1
2 ‖x‖

4
+u2, g(x) = 2.7778x2

1 +2.2223x2
2. All com-

putations were carried out by MATLAB. Espe-
cially, the optimal control sequence was computed
by the constr code of the Optimization toolbox.
Simulations for the continuous-time system were
carried out using ode45 program in MATLAB
when T = 0.05, m = 10, ℓ1 = ℓ2 = 1, ℓ = 3.
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Fig. 2. The evolution of x1 with different
controllers.
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Fig. 3. The evolution of x2 with different
controllers.

The trajectories of the continuous-time system
are shown in Figures 2-3. In these figures, three
cases are shown; 1) The ideal instantaneous ℓ-
step receding horizon controller is applied under

the condition that no delays are presented (ideal
RHC); 2) The ideal instantaneous receding hori-
zon controller is applied without taking into ac-
count the occurring delays (RHC delay neglected);
3) The receding horizon controller obtained by the
proposed Algorithm applied to the system when
the delays are present (RHC delay considered).
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