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Abstract: This paper presents a stability analysis of the iterative learning con-
trol (ILC) problem when the plant Markov parameters are subject to interval
uncertainty. Using the super-vector approach to ILC, vertex Markov matrices
are employed to develop sufficient conditions for both asymptotic stability and
monotonic convergence of the ILC process. It is shown that Kharitonov segments
between vertex matrices are not required for checking the stability of interval
super-vector ILC systems, but instead checking just the vertex Markov matrices
is sufficient. Copyright c©2005 IFAC
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1. INTRODUCTION

Iterative learning control (ILC) using the super-
vector analysis approach has been well established
in the literature. The advantage of the super-
vector notation is that the 2-dimensional problem
of ILC is changed as the 1-dimensional multi-input
multi-output (MIMO) problem. As shown in, for
example, Moore (1993, 1998); Moore and Chen
(1999), most discrete-time ILC problems can be
expressed in the form

Yk = HUk

where k is the iteration index, Yk, Uk ∈ Rn, where
n is the trial length, and H is a lower-triangular
Toeplitz matrix whose elements are the Markov
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parameters of the system to be controlled in the
linear case. For time-varying systems and some
classes of affine nonlinear systems a similar repre-
sentation can be developed, with the key feature
being that the matrix H is lower triangular. The
super-vector approach to ILC is to design a learn-
ing gain matrix Γ so the resulting “closed-loop
system” in the iteration domain, given by

Ek+1 = (I −HΓ)Ek

where Ek = Yd − Yk is the error, for some desired
trajectory Yd, is either asymptotically and/or
monotonic convergent along the iteration axis in
an appropriate norm topology. Such stability con-
ditions have been analyzed in Moore and Chen
(2002); Chen and Moore (2002a); and design is-
sues have been considered in Chen and Moore
(2001, 2002b).

In the ILC literature, robust design of the learning
gain matrix has been considered using standard
techniques such as H∞-ILC, LQ-ILC, optimal-



ILC, etc. However, though it is natural to con-
sider interval uncertainties in the system matrix
H when using the super-vector representation, to
date there has been little or no research on this
topic. In this paper we will study the stability of
the ILC problem when the plant Markov param-
eters are subject to interval uncertainty.

In the robust control literature there are numerous
results related to Hurwitz stability for interval ma-
trixes, including Jiang (1987); Petkovski (1988),
and Schur stability in Batra (2003); Rohn (1994).
Kharitonov’s theorem has also been very popular
for interval matrix stability analysis, e.g., Bhat-
tacharyya et al. (1995); Kokame and Mori (1991).
However, all these works require lots of calculation
and cannot be directly applied for checking the
monotonic convergence of interval ILC. In this
paper, an analysis method is developed for check-
ing the convergence properties of the interval ILC
problem. Similar to the Kharitonov vertex poly-
nomial method, it will be shown that the extreme
values of the interval Markov parameters provide
a sufficient condition for monotonic convergence
of the interval ILC.

This paper is organized as follows. Section 2
introduces some basic ILC results and describes
the interval ILC problem. In Section 3 sufficient
stability conditions for interval ILC are derived.
A simulation example and conclusions are given
in Sections 4 and 5, respectively.

2. INTERVAL ILC

Let the ILC learning gain matrix (Γ) discussed
above be given as

Γ = {γij}, i, j = 1, · · · , n, (1)

where the gains γij are the elements Γ. We call
the gains Arimoto-like if γij = 0, i 6= j and
γij = γ, i = j. The gains γij are called causal ILC
gains for i > j and non-causal ILC gains for i < j.
If the gains do not exhibit Toeplitz-like symmetry
we call the learning algorithm time-varying. In
ILC, there are two stability concepts: asymptotic
stability and monotonic convergence.

In asymptotic stability, two concepts should be
differentiated according to the ILC gain matrix
structure. When Arimoto-like gains and purely
causal gains are used, the stability condition is
defined as:

|1− γiih1| < 1, i = 1, · · · , n, (2)

where h1 is the first non-zero Markov parameter.
When non-causal gains are used, the asymptotic
stability condition is defined as: ρ(I − HΓ) < 1,
where ρ is the spectral radius of (I −HΓ), and H
is the Markov matrix.

Monotonic convergence is defined in appropriate
norm topology as follows:

Definition 1. If ‖I − HΓ‖1 < 1, then ‖Ek‖
is monotonically convergent to zero in l1-norm
topology.

Definition 2. If ‖I − HΓ‖∞ < 1, then ‖Ek‖
is monotonically convergent to zero in l∞-norm
topology.

We now describe the interval ILC problem using
the following definitions.

Definition 3. A scalar a, is called an interval pa-
rameter if it lies between two boundaries accord-
ing to a ∈ [a, a], where a is the minimum value of
a and a is the maximum value of a.

Definition 4. An interval matrix (AI) is defined
as a matrix that is a member of the interval plant
AI given by:

AI = {AI : aI
ij ∈ [aij , aij ], i, j = 1, · · · , n},

where aij is the maximum extreme value of the
ith row and jth column element of the uncertain
plant, and aij is the minimum extreme value of the
ith row and jth column element of the uncertain
plant.

Definition 5. The upper bound matrix (A) is a
matrix whose elements are aij . The lower bound
matrix (A) is a matrix whose elements are aij . The
vertex matrices (Av) are defined by:

Av = {Av : av
ij ∈ {aij , aij}, i, j = 1, · · · , n}

Definition 6. If the Markov parameters are inter-
vals such as: hI

i ∈ [hi, hi], then ILC system has
interval uncertainties. The interval Markov matrix
is denoted as HI .

The interval ILC problem is concerned with the
analysis and design of the ILC system when the
system to be controlled is subjected to structured
uncertainties in its Markov parameters. There are
two classes of problems. First, given an interval
Markov matrix HI and a gain matrix Γ, what
are the stability and convergence properties of
the closed-loop system? Second, given an interval
Markov matrix HI , design Γ, so as to achieve
desired stability and convergence properties of
the closed-loop system. In the next section we
consider the first problem.

3. STABILITY CONDITIONS OF INTERVAL
ILC

We consider separately asymptotic stability and
monotonic convergence.

3.1 Asymptotic Stability

For the asymptotic stability test of the interval
ILC, the following lemmas are adopted from liter-
ature.

Lemma 1. [Shih et al. (1998); Han and Lee
(1994)] With a given interval matrix AI , the spec-
tral radius of AI is bounded by the maximum
value of the spectral radii of vertex matrices Av.



Lemma 2. [Delgado-Romero et al. (1996)] Let the
interval matrix be given as A ≤ AI ≤ A. If β =
max{ρ(MS1), ρ(MS2)} < 1, where MS1 = aij if
i = j and MS1 = max{|aij |, |aij |} if i 6= j; MS2 =
aij if i = j and MS2 = min{−|aij |,−|aij |} if
i 6= j, then the interval matrix AI is Schur stable.

Now, with above definitions and lemmas, we are
ready to present our main results. Based on (2),
the following theorem is suggested.

Theorem 1. Let the first Markov parameter h1

be an interval parameter given by hI
1 ∈ [h1, h1]

and let Arimoto-like/causal ILC gains be used in
Γ. Then the interval ILC system, Ek+1 = (I −
HIΓ)Ek, is asymptotically stable if

max{|1− γiih1|, |1− γiih1|} < 1, i = 1, · · · , n, (3)

Proof: Using the fact that HI is a lower Toeplitz
triangular matrix and Γ is a lower triangular
matrix, then I−HIΓ is a lower triangular matrix.
So, the diagonal terms of I − HIΓ, given as
{1 − γiih

I
1}, i = 1, · · · , n, are the eigenvalues of

I − HIΓ. When i = k, the maximum value of
|1−γkkhI

1| occurs at one of hv
1 ∈ {h1, h1}, because

|1 − γkkhI
1| is the absolute value of 1 − γkkhI

1.
Therefore, the maximum of {|1−γiih1|, |1−γiih1|}
occurs at one of hv

1 ∈ {h1, h1}. So, if max{|1 −
γiih1|, |1 − γiih1|} < 1 is satisfied, the system is
asymptotically stable from (2).

Now consider the case of a general Γ. In I −
HIΓ, the interval matrix is HI . So, the lower
bound and the upper bound of I − HIΓ should
be re-calculated. For convenience, let T = HΓ,
calculated as:

tij =
i∑

k=1

hkγ(i+1−k)j , i, j = 1, · · · , n

where tij are elements of T and γ(i+1−k)j are ILC
learning gains. Similarly define T I = HIΓ and
also define P = I − T and P I = I − T I . The
lower and upper bounds of P I , i.e., P and P ,
can be calculated easily from the lower triangular
Toeplitz matrix structure of T I . Then, using the
lower and upper bounds of P I , it can be shown
from Lemma 1 that the maximum spectral radius
of I −HIΓ occurs at one of vertex matrices, P v,
of P I . However, it is quite messy to check all
the vertex matrices. Thus, it is suggested that
Lemma 2 should be used to check asymptotic
stability for the case of a general Γ.

3.2 Monotonic Convergence

To prove our next result the following lemmas are
required.

Lemma 3. Let xI ∈ [x, x] be an interval parame-
ter. Then for

y = |γ11x
I + γ12|+ |γ21x

I + γ22|,
∀γ11, γ12, γ21, γ22 ∈ <, (4)

the max{y} occurs at a vertex point of x (i.e.,
xv ∈ {x, x}).

Lemma 4. Let xI ∈ [x, x] be an interval parame-
ter. Then for

y = |γ11x
I + γ12|+ |γ21x

I + γ22|+ · · ·+
|γn1x

I + γn2|,∀γi1, γi2 ∈ <, i = 1, · · · , n,(5)

the max{y} occurs at one of vertex points of xv

(i.e., xv ∈ {x, x}).

The following lemma considers multiple interval
parameters.

Lemma 5. Let xj ∈ [xj , xj ], j = 1, · · · ,m be
interval parameters (for convenience we omit the
superscript I and v). Then for

y = |(γ1
11x

1 + γ1
12) + · · ·+ (γm

11x
m + γm

12)|+ · · ·
+ |(γ1

n1x
1 + γ1

n2) + · · ·+ (γm
n1x

m + γm
n2)|,

∀γj
i1, γ

j
i2 ∈ <, i = 1, · · · , n, j = 1, · · · ,m,

(6)

the max{y} occurs at the vertices of xj .

The proofs of Lemma 3, Lemma 4, and Lemma 5
are given in the Appendix. Next, using these
lemmas, the following theorems can be proven.

Theorem 2. Given interval Markov parameters
hI

i ∈ [hi, hi], the interval ILC system is mono-
tonically convergent in the l∞-norm topology if

max{‖I −HvΓ‖∞} < 1, (7)

where Hv are vertex Markov matrices of the
interval plant.

Proof: Based on Definition 2, the theorem can
be proved by showing that max{‖I −HIΓ‖∞} =
max{‖I − HvΓ‖∞} (Note: in this proof, HI de-
notes a matrix in the interval matrix set HI =
{HI}. Furthermore, for convenience, we omit I in
HI for notational simplicity). From the expansion
of I−HΓ, the row vectors of I−HΓ are expressed
as:

(I −HΓ)n = [−(hnγ11 + hn−1γ21 + · · ·+ h1γn1),

−(hnγ12 + hn−1γ22 + · · ·+ h1γn2), . . . ,

1− (hnγ1n + hn−1γ2n + · · ·+ h1γnn)],

(8)

where (I −HΓ)i is the ith row vector. Then, ‖I −
HΓ‖∞ is the function of hi and γij , because the
following is true:



‖I −HΓ‖∞ = max{‖(I −HΓ)1‖1, ‖(I −HΓ)2‖1,
· · · , ‖(I −HΓ)n‖1}, (9)

where ‖(I − HΓ)i‖1 is the l1-norm of each row
vector. Thus, assuming fixed ILC gains γij , ‖I −
HΓ‖∞ is expressed in the general form such as:

‖I −HΓ‖∞ = | − (hiγ11 + · · ·+ h1γi1)|+ · · ·
+ |1− (hiγ1i + · · ·+ h1γii)|+ · · ·
+ | − (hiγ1n + · · ·+ h1γin)|, (10)

where i means the ith row. We see that (10)
is the same form as (6) of Lemma 5. Note, in
Lemma 5, xj are intervals with ∀γj

i1, γ
j
i2 ∈ <, i =

1, · · · , n, j = 1, · · · ,m, and in (10), hi are intervals
with ∀γij ∈ <, i, j = 1, · · · , n. Therefore, from
Lemma 5, the maximum of ‖ I − HIΓ‖∞ occurs
at one of vertex Markov matrices of the plant.

Theorem 3. Given interval Markov parameters
hI

i ∈ [hi, hi], the following equality is true:

max{‖I −HIΓ‖1} = max{‖I −HvΓ‖1}, (11)

where ‖ · ‖1 is a matrix 1-norm, which is defined
as: ‖A‖1 = maxj=1,···,n

∑n
i=1 |Aij |.

Proof: The proof can be completed using the
same procedure as above.

4. SIMULATION ILLUSTRATION

Let us consider a single-input, single-output sys-
tem given as:

A =

[
0.72 0.0 0.0
1.0 −1.04 −0.81
0.0 0.81 0.0

]
;B =

[
1
0
0

]
;

and C = [1.0 − 0.98 − 1.09], which has first and
second Markov parameters given as h1 = CB = 1
and h2 = CAB = −0.266. It is assumed that there
are interval uncertainties in h1 and h2 given as

hI
1 ∈ [0.9, 1.1]; and hI

2 ∈ [−0.366,−0.166].

We consider two ILC learning gain matrices. For
“Case-1” we suppose Arimoto-like ILC (only di-
agonal terms). “Case-2” uses the inverse of the
nominal (without interval) Markov matrix. Thus
for both cases Theorem 1 applies. From Theo-
rem 1, max{|1 − γiih1|, |1 − γiih1|} = 0.1. When
the vertex matrix checking method of Lemma 2
is used, β is calculated as 0.1. So, Lemma 2 has
the same result as Theorem 1. Thus, clearly, the
system is asymptotically stable for both gains.
However, from the four vertex points of ‖I−HvΓ‖
based on Theorem 2, the maximum ∞-norm of
Case-1 is bigger than 1, while the maximum ∞-
norm of the Case-2 is less than 1 (see Fig. 1).
So, Case-1 might not always be be monotonic
convergent for every plant in the interval system,
while Case-2 is not only asymptotically stable but

also monotonic convergent in l∞-norm topology.
Fig. 2 shows the ILC performance result using
the sinusoidal reference signal. The figures shows
the maximum, minimum, and average absolute
errors at each iteration trial. The upper figure
is the result of Case-1, and the bottom figure is
the result of Case-2. In the Case-1 test, we used
two different γ1: the dot-dashed lines are results
with γ1 = 1

h1
, and the solid lines are results with

γ1 = 1

h1
. The reason why we use γ1 = 1

h1
is that

h1 is more robust than h1 = 1.0. However, both
cases show that the signals are not monotonically
converging even if the solid lines are more robust
than the dot-dashed lines.
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Fig. 1. Upper: norms for Case-1; bottom: norms
for Case-2.
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Fig. 2. ILC performance results.

5. CONCLUSION

We have presented a stability analysis of the ILC
problem when the plant Markov parameters are



subject to interval uncertainty. It was shown that
checking just the vertex Markov matrices of an in-
terval plant is enough to determine the asymptotic
stability and the monotonic convergence proper-
ties of the interval ILC system. This is a powerful
result from a computational perspective. In fu-
ture research we will consider the design problem:
given an interval Markov matrix HI , find Γ so
as to achieve desired stability and convergence
properties of the closed-loop system.

6. APPENDIX

In the following proofs, superscripts I and v are
omitted for simplicity.
Proof: (Lemma 3): The upper figure of Fig. 3
shows the line drawings of |γ11x+γ12| and |γ21x+
γ22|. Let us check the three different regions R1 ∈
[x, x0], R2 ∈ [x0, x0], and R3 ∈ [x0, x]. In region
R1, max{y} occurs at x, because y1+y2 > y3+y4.
Also, in region R3, max{y} occurs at x, because
y8 + y9 > y6 + y7. Now consider R2. In region R2,
y is the just summation of two linear straight lines
(i.e, the line connecting from y6 to y4 and the line
connecting from y3 to y7) like y = γ11x + γ12 +
γ21x + γ22 = (γ11 + γ21)x + γ12 + γ22, which is
represented by line l1. So, in region R2, the value
of y linearly increases or linearly decreases. So,
max{y} in R2 occurs at x ∈ {x0, x0}. Finally,
from the upper figure of Fig. 3, since the following
relationship is true:

max{y1 + y2, y8 + y9} > max{y3 + y4, y6 + y7},

the proof of Lemma 3 is completed.

Proof: (Lemma 4): From the upper figure of
Fig. 3, consider R2 again. In region R2, the value
of y (summation of two lines) is l1. Here, let us
change the upper figure to the bottom figure. In
the bottom figure, y = |γ11x + γ12|+ |γ21x + γ22|
is represented by lines l1, l2, and l3. To prove
Lemma 4, draw a supplementary line (the dashed
line in the figure) from point y10 to point y6.
Then, the line connecting y10 and y6; and the line
connecting y6 and y11 can be represented by a line
such as y = |γ1

1x + γ1
2 | + 4y1 with γ1

1 , γ1
2 ∈ <,

and 4y1 ∈ <+. Note that this approach does
not change the result, because the triangular area
included by points y3, y6, and y10 does not add
any value to vertex point values (i.e., y10 and y11).
Whereas, if the maximum value still occurs at a
vertex point after the triangular area is added, it
is certain that the maximum value always occurs
at a vertex point. Now, let us check the following:

y = |γ11x + γ12|+ |γ21x + γ22|+ |γ31x + γ32|,

which is rewritten as: y = |γ1
1x + γ1

2 | + 4y1 +
|γ31x + γ32|. Here, ignore 4y1, because 4y1 is a
constant value at all x (i.e., for all x ∈ [x, x]).
Then, from Lemma 3, the maximum value of y
occurs at a vertex of x (i.e., x ∈ {x, x}). In
this way, by induction, the maximum value of
y = |γ11x + γ12|+ |γ21x + γ22|+ · · ·+ |γn1x + γn2|
occurs at a vertex point of x even though n →∞.
Thus, the proof of Lemma 4 is completed.
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Fig. 3. Supplement figures for Appendix proofs.

Proof: (Lemma 5): Lemma 4 shows that, in the
following equation

y = |γ11x + γ12|+ · · ·+ |γn1x + γn2|, (12)

γi2, i = 1, · · · , n, can be any real values. So, in (6),
if the following substitution is used:

γ1
i2 + · · ·+ (γm

i1xm + γm
i2 ) := γi2, i = 1, · · · , n

then, (6) is the same form as (5). Therefore,
max{y} in (6) occurs at a vertex point of x1(i.e.,
x1 ∈ {x1, x1}) by Lemma 4, because all elements
of {xj}, j = 1, · · · ,m, are independent each other.
Next, let us place γj

i1x
j + γj

i2, j ∈ {1, · · · ,m}, i =
1, · · · , n to the foremost in each absolute bracket
like:

y = |(γj
11x

j + γj
12) +

m∑
k=1,k 6=j

(γk
11x

k + γk
12)|

+ · · ·

+|(γj
n1x

j + γj
n2) +

m∑
k=1,k 6=j

(γk
n1x

k + γk
n2)|.(13)

By denoting γj
l2 +

∑m
k=1,k 6=j(γ

k
l1x

k + γk
l2) := ξl,

where l = 1, · · · , n, the right-hand side of above
equation is changed as:

y = |γj
11x

j + ξ1|+ · · ·+ |γj
n1x

j + ξn|, (14)

where ξi, i = 1, · · · , n could be any real values.
This is the same form as (5), so the maximum



value of y of (14) occurs at a vertex point of
xj (i.e.,xj ∈ {xj , xj}) by Lemma 4. Here, note
that the maximum value of y, which occurs at
a vertex point of xj , is just with respect to xj .
Let us denote this maximum value as y∗j . Now,
it is required to show that the maximum value
of y with respect to all intervals (i.e.,{xj}, j =
1, · · · ,m) occurs at one of the vertex vectors such
as

Xv = [{x1, x1}, {x2, x2}, · · · , {xm, xm}]. (15)

Denote this maximum value as y∗. Note that
y∗ 6= y∗j . So, it is necessary to prove that, when the
maximum value of y occurs at a vertex of xj with
fixed j, other interval parameters (i.e., xk, k 6= j,)
should be at vertices also (in this case, y∗ = y∗j ).
Even though the maximum value of y occurs at a
vertex of xj , the other intervals xk, k 6= j, might
not be at vertex points (in this case, y∗ 6= y∗j ).
Let us assume that, when the maximum value
of y occurs at a vertex of xj , the other interval
parameter xk, k 6= j is not at a vertex point (i.e.,
xk is an element of open set xk ∈ (xk, xk)). Let us
change (14) using ξi := γk

i1x
k + ξ′i as:

y = |γk
11x

k + γj
11x

j + ξ′1|+ |γk
21x

k + γj
21x

j + ξ′2|+
· · ·+ |γk

n1x
k + γj

n1x
j + ξ′n|, (16)

where ξ′i, i = 1, · · · , n could be any real values.
Because (16) and (14) are same equations, the
maximum value of y still occurs at a vertex of
xj . So, max{y} = y∗j , but max{y} 6= y∗k and
max{y} 6= y∗, where y∗k is the maximum value
with respect to xk. However, by Lemma 4, y
of (16) can be maximized more with respect
to xk. In other words, even though the current
maximum value of (16) is y∗j , when xk is at one of
vertex points, y∗j can be increased more. Just by
comparing the following two values:

y =

{
y∗j , if xk ∈ (xk, xk), xj = {xj , xj}
y∗jk , if xk ∈ {xk, xk}, xj = {xj , xj}

(17)

it is found that max{y∗jk} ≥max{y∗j } by Lemma 4.
Then, the maximum value of y of (16) with respect
to k and j occurs at one of {{xk, xk}, {xj , xj}}.
Finally, since k ∈ {1, · · · ,m}, the following is true
by induction:

max{y} = y∗123···m, when xi = {xi, xi},
i = 1, · · · ,m, (18)

where y∗123···m is the maximum value with respect
to all interval parameters. Then, from the re-
lationship y∗=y∗123···m, the maximum value of y
occurs at one of the vertex vectors:

Xv = [{x1, x1}, {x2, x2}, · · · , {xm, xm}]

Thus, the proof of Lemma 5 is completed.
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