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Abstract: The benefits of significant advances in general software engineering support 
environments in recent years have yet to be realized in the area of embedded control 
systems, due to a particularly demanding set of requirements. A toolset providing 
methodological and tool support is presented which addresses specific challenges to 
system development in the control domain including component-oriented development, 
reusability, object-oriented design, integration of third-party tools, and validation. 
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1. INTRODUCTION 

 
The real-time and embedded systems market is a 
highly specialized area in which rapid progress has 
enabled the construction of ambitious distributed and 
multi-objective control systems. At the same time, the 
power and flexibility of available platforms has lead 
to an ever-increasing domination of the software 
component of complete systems solutions. Yet the 
provision of adequate software design methods and 
support still lags far behind. Consequently, today 
most of the cost in system development involves ad 
hoc expensive system integration and validation 
techniques, which rely almost exclusively on time-
consuming simulations and on testing more or less 
complete versions of the system. 
 
The industrial community, facing increasing 
commercial pressures, has now begun to demand the 
same powerful software design and development 
environments that are available to the software 
engineering community at large. This not only 
implies provision of specialized facilities such as 
scheduling algorithm verification, but also the ability 
to exploit the best practices that have evolved in the 
software engineering community over the years, 
including flexible, modular architectures, platform-
independent design techniques, configuration 
management of program families, reusable software 
components – in short, the best results of the software 
engineering community over the past four decades. 
 
The contribution of software engineering to the real-
time embedded domain consists not only – not even 

most significantly – of technologies (such as reusable 
modules and code generators) but of methodologies, 
such as object-oriented design (Gamma, et al., 1995) 
and the use of standardized notations such as the 
Unified Modeling Language (Booch, et al., 1998). 
Methodologies and the best practices they embody 
have been relatively unknown to date in the real-time 
and embedded community, a domain where 
familiarity with software engineering is often 
acquired on an “as-needed” basis. The Unified 
Modeling Language (UML) has become the reference 
point around which tool vendors have organized their 
offerings to the real-time and embedded systems 
market. However, current UML tools lack support for 
the definition of explicit time constraints on the 
computations associated to design elements or to their 
collaborations, they do not offer an a priori analysis 
regarding the enforcement of the time constraints 
themselves, with respect to the system resource 
allocation strategy and the adoption of a suitable run-
time computational model. Moreover none of these 
tools provides sufficient support for handling all the 
different development phases, especially for systems 
with a significant control component. These phases 
usually include design of control laws, supervision 
logic, real-time task scheduling, modeling of 
distribution and communication, etc. This paper 
describes a design methodology and environment that 
addresses such issues. 
 
 
 
 



     

2. REQUIREMENTS FOR EMBEDDED CONTROL 
SYSTEM DEVELOPMENT 

 
In order to provide a concrete context for the 
discussion, an application is presented that poses a 
number of challenges to the objective of providing 
methodological and tool support for advanced 
applications in the control domain. The application, 
under development at the Swiss Federal Institute of 
Technology in Lausanne (EPFL) under the auspices 
of the European Union IST project RECSYS, consists 
of an application involving multiple heterogeneous 
autonomous robots of two types (Figure 1). 

 

Mamma 
(RoboX) 

Bambino 
(Smartease) 

 
Fig. 1. Coordinated autonomous robots. Mamma 

robot is intelligent and coordinates multiple, 
inexpensive Bambino robots which can be 
sacrificed in dangerous environments. 

 
The Mamma is an expensive, intelligent robot with 
localization capabilities; Bambini are inexpensive, 
expendable devices with limited intelligence and 
localization capabilities. The mission of the set of 
robots formed by one Mamma and multiple Bambini 
is to explore an indoor environment to find one or 
more predefined targets. The team of robots moves 
from one location to another in a coordinated manner 
led by the Mamma. Real-world applications include 
the clearing of anti-personnel mines. 
 
The application provides an important example of a 
large category of applications in the robotics area and 
more generally in the area of autonomous agent-based 
systems. Such applications are characterized by: 
 
��Independent development of individual 

components (e.g. Mamma, Bambini) 
��Multiple copies of identical components (e.g. 

Bambini) 
��Flexible assembly of components into an overall 

system design (e.g. Mamma plus variable number 
of Bambini) 

 
These characteristics place a number of requirements 
on both software engineering design methodology 
and tool: 
 
��The methodology and tool must not force the user 

to design an entire monolithic system, but rather 
must allow the separate design, architectural 
modeling, validation, and coding of a single 
subsystem (e.g. Mamma) to be carried out in 

complete independence from other application 
components; 

��The toolset must make it relatively easy and 
convenient to clone an application component 
design (e.g. a Bambino) with correctly preserved 
semantics; 

��Finally, the methodology and toolset together 
must make it relatively straightforward to create, 
configure, and validate entire application systems 
from different combinations of components. This 
requirement is related to a current line of research 
at EPFL on the design of reusable control 
components that retain robust real-time 
characteristics (Pont and Siegwart, 2004). 

 
These requirements effectively bring the challenge of 
component-based development into the control and 
robotics domain; the first step in meeting this 
challenge is to amend the deficiencies of the Unified 
Modeling Language in this regard. 
 
 

3. EXTENDING THE UML FOR HARD REAL-
TIME SYSTEMS DEVELOPMENT 

 
In this section a methodology and tool are described 
that address the fundamental deficiencies of the UML 
and associated tool support when applied to 
demanding real-time systems development, 
permitting its powerful mechanisms for component-
based development to be exploited. 
 
 
3.1 HRT-UML methodology 
 
In the European aerospace community a reference 
methodology for design is the Hierarchical Object 
Oriented Design (HOOD) and in particular its 
extension for the modeling of hard real time systems, 
Hard Real Time-Hierarchical Object Oriented Design 
(HRT-HOOD), recommended by the European Space 
Agency for the development of on-board systems 
(Burns and Wellings, 1995). The aerospace 
experience shows that the design of Hard Real-Time 
systems needs methodologies suitable for the 
modeling and analysis of aspects related to time, 
schedulability and performance. 
 
The HRT-UML method (D’Alessandro, et al., 2002) 
defines an extension profile of the Unified Modeling 
Language, which permits the designer to express the 
concepts and techniques of the HRT-HOOD method 
in standard UML. It combines the benefits of a 
mature, well-understood hard real time design method 
and an internationally recognized object-oriented 
design standard notation. 
 
Furthermore, HRT-UML provides an integrated 
methodological solution for the design of complex 
real-time embedded systems and for their evaluation 
and verification, according to rigorous techniques 
such as formal verification, model based 
dependability evaluation and schedulability analysis. 



     

3.2 HRT-UML design principles  
 
The starting point for an HRT-UML design is not the 
definition of classes, but rather the set of objects that 
compose the system and their interconnections. 
Therefore an HRT-UML system is built by directly 
defining objects and links instead of classes and 
relationships. This means that the first thing an HRT-
UML developer has to deal with is the creation of 
objects in the system space, without any concern for 
class issues. Classes of objects become an interesting 
concern only when reuse of objects is foreseen. These 
same fundamental real-time design principles carry 
over into the RECSYS toolset. 
 
An HRT-UML project is therefore composed of a set 
of interacting objects, which are organized in a 
structure according to several principles: 
 
��Structural Decomposition. Objects may be 

decomposed into other objects, so that the system 
can be represented as an include graph or parent-
child hierarchy of objects; 

��User-Provider Relations. Objects may use 
services of other objects, so that the system can be 
represented as a use graph or user-provider 
hierarchy of objects; 

��Object Nested Notation. Objects have a compact 
notation that includes the operation compartment, 
allowing users to avoid having to use different 
diagrams (i.e. class diagrams); and an optional 
compartment showing the object internals (i.e. the 
decomposition), which permits users to better 
understand the system topology; 

��Multiple Static Instances. Objects may have the 
same structure and properties but differ in their 
attribute initialization values and have an 
independent state evolution. The common 
structure and properties of such objects are 
factored into the Underlying Class Model, and an 
object model, the Prototype Instance, from which 
a new instance may be cloned. This facility is 
particularly relevant to the RECSYS case study 
under implementation by EPFL, where multiple 
instances of autonomous robotic systems are 
created. 

 
In summary, in the HRT-UML approach, the “class 
model,” which reflects the constructive approach to 
designing the system in classical object-oriented 
methods, is considered as a background model, which 
can be largely derived from the object model in an 
automatic way. The HRT-UML toolset allows users 
to build their systems dealing only with objects, 
automatically creating and maintaining the underlying 
class model for the purpose of UML metamodel 
integrity. This is managed in a transparent way for 
users. 
 
When multiple static instances are needed (as in the 
case of multiple Bambini for the application 
involving multiple autonomous robots), the class 
concept comes into the picture: cloning the prototype 

instance creates a new instance of a class. The new 
object may have use-relations in the system with 
required objects, which are represented as unbound 
placeholders. They have to be subsequently bound 
(that is, redirected) to some real object, which is 
visible in the instantiation environment. 
 
 
3.3 Real-Time Attributes and Schedulability Analysis 
 
HRT-UML objects and operations have associated 
real-time attributes, allowing specialized analyses 
such as schedulability analysis to be performed. The 
most fundamental attribute is the type of the object 
itself. An HRT-UML design contains the following 
types of objects: 
��Passive - have no control over when invocations 

of their operations are executed, and do not 
spontaneously invoke operations in other objects; 

��Active - may control when invocations of their 
operations are executed, and may spontaneously 
invoke operations in other objects. The most 
general type of object; 

��Protected - may not have arbitrary 
synchronization constraints and must be 
analyzable for the blocking times they impose on 
their callers; 

��Cyclic - represent periodic activities; 
��Sporadic - represent sporadic (in contrast to 

periodic) activities. 
 
Some further attributes are concerned with mapping 
timing requirements onto the design (e.g. the 
deadline). Other attributes have to be set before 
schedulability analysis can be performed (e.g. the 
worst case execution time). Other attributes are set 
after this analysis automatically (e.g. the priority). 
 
For each specified mode of operation, cyclic and 
sporadic objects have a number of temporal attributes 
defined: 
��The period of execution for each cyclic object; 
��The minimum inter-arrival time for each sporadic 

object; 
��Offset time for each cyclic object; 
��Deadlines for all sporadic and cyclic activities. 
 
In order to undertake schedulability analysis, the 
worst-case execution time for each thread and all 
operations (in all objects) must be known. After the 
design activity these can be estimated (taking into 
account the execution environment constraints) and 
appropriate attributes assigned. The better the 
estimates, the more accurate the schedulability 
analysis. Good estimates come from component reuse 
or from arguments of comparison (with existing 
components on other projects). During the 
architecture design activity the designer commits to 
the run-time scheduling approach – that is, the pre-
emptive static priority scheduling with priorities 
assigned using deadline monotonic scheduling theory. 
 
 



     

3.4 HRT-UML and UML 2.0  
 
The most stable version of the UML is 1.4, in effect 
for several years and the reference version for nearly 
all methodologies and toolsets on the market. 
However, a major new version 2.0 has recently been 
approved for release, whose impact on the evolution 
of HRT-UML is discussed in this section. 
 
Interestingly, the changes that have a major impact on 
HRT-UML are not those concerning real-time issues 
– these issues are still handled primarily (and 
appropriately) in profiles rather than the official 
language definition – but those concerning software 
engineering issues, and in particular issues of 
component-based development and reuse. Earlier 
versions of the UML had few (or inadequately 
defined) facilities for supporting hierarchical structure 
or component composition. They also contained 
inadequate mechanisms for specifying the features of 
components or modules intended to be reusable. 
 
Ports, provided and required interfaces. One of the 
most significant weaknesses in earlier versions of the 
UML was the lack of mechanisms, essential to reuse, 
for specifying both the internal and external 
environment of an object. HRT-UML introduced the 
notion of “external placeholder objects” which model 
the interacting environment of an object. The external 
placeholders of HRT-UML may now be replaced in 
UML 2.0 by port-required interface couples. Having 
different ports – with possibly the same required 
interfaces, whenever more than one partner object is 
needed – addresses the issue of topology (in contrast, 
a required interface only gives the abstract 
specification of required objects). The HRT-UML 
notion of binding placeholder objects is equivalent to 
inter-port connection with compatible interfaces 
(“required” against “provided”). 
 
Structured classes. The new concept of structured 
classes has been introduced in UML 2.0 to represent 
classes composed of parts, with an explicit “nested” 
notation with the purpose of modeling containment 
hierarchies. This concept yields a more standard form 
of support for the HRT-UML hierarchical orientation. 
As noted previously, HRT-UML introduces the 
notion of “prototype instance” in order to model the 
internal hierarchical structure of a class. It turns out 
that this is exactly equivalent to the concept of 
structured classes, and that therefore a more standard 
representation in the meta-model and visualization at 
notational level is possible in mapping onto UML 2.0. 
Furthermore, it is notable that the port-interfaces, 
connectors and structured-classes concepts allow for 
standard modeling of the HRT-UML delegation 
relations between provided interfaces and internal 
objects. 
 
Components. The component model has been revised 
in UML 2.0 to make a number of implicit concepts 
from UML 1.4 explicit and more generally 
applicable. A component is defined in UML 2.0 as a 

modular unit with well-defined interfaces that is 
physically replaceable within its environment. As 
noted earlier, the specification of internal and external 
interfaces is a necessary precondition for reusability – 
but it is not sufficient. A reusable component must be 
constructed as such: its internal and external ports and 
interfaces must be accurately modeled in order to 
encapsulate in itself all the possible assumptions on 
the surrounding environment. The component must 
also be made safe from any sequence of requests from 
its surrounding environment. This is quite different 
from designing a class (even a structured one) just for 
the system under development. UML 2.0 
components, inspired by years of experience with 
software component architectures such as CORBA 
and COM, bring in the final bit of semantics 
necessary for true component-oriented development. 
 
Note that, as useful and important as the concepts 
provided by UML 2.0 are, they are still independent 
of the major methodological innovations of HRT-
UML, such as the focus on objects rather than classes 
and the mechanisms for cloning in a semantically 
clean fashion. UML 2.0 will help bring HRT-UML 
into the mainstream faster, but the contributions of 
HRT-UML stand on their own. 
 
 

4. INTEGRATING SOFTWARE ENGINEERING 
AND CONTROL-ORIENTED TOOLS  

 
The HRT-UML methodology and toolset described 
above go a long way toward providing the kind of 
support needed for the development and analysis of 
demanding real-time systems in the control domain; 
but alone they are not enough to provide complete 
support for what has come to be known as platform-
based design in the control community (Balarin, et 
al., 1997). This popular approach involves firstly the 
specification of pure control-related functional 
properties of the system, followed by mapping to 
candidate hardware/software architectures, and finally 
co-simulation of a selected hardware/software 
architecture in order to verify overall fulfillment of 
real-time and resource constraints (Liu, et al., 2002). 
 
The most widely disseminated, firmly entrenched tool 
for specifying functional properties of control systems 
is Simulink, from the Matlab family of tools. Practical 
and commercial necessity therefore dictates the 
provision of a possibility for the HRT-UML toolset to 
interact with the Simulink tool. 
 
Similarly, co-simulation is generally carried out with 
the use of highly specialized tools, which often make 
use of the Matlab environment for their operation. An 
example of such a tool for co-simulation is TrueTime 
(Cervin, et al., 2003; Henriksson, et al., 2004). 
TrueTime is a Matlab-based simulator for real-time 
control systems developed at Lund University for co-
simulation of controller task execution in real-time 
kernels, network transmissions, and continuous plant 
dynamics. It provides event-based simulation, real-



     

time kernel blocks, and appropriate network blocks 
(e.g. Ethernet, CAN, TDMA, FDMA, Round Robin, 
and switched Ethernet networks). 
 
Although TrueTime is not a universal, nearly ad hoc 
standard tool like Simulink, it does represent a class 
of tools that is so specialized that it would be 
impractical to consider extending the HRT-UML 
toolset to cover the same functionality. A much better 
and more flexible solution is to provide for interaction 
between all three toolsets, each handling its own job 
in the best way possible. 
 
Figure 2 illustrates the overall design environment 
provided in this manner.  
 

 

TrueTime 
Co simulation 

Simulink
Functional control design 

HRT-UML Toolset 
Software architectural design 

Scheduling analysis 

 
Fig. 2. Design environment. Simulink functional 

control designs are mapped and input to HRT-
UML toolset where architectural design and 
schedulability analysis is performed. Candidate 
hardware-software architectures are co-simulated 
with TrueTime. 

 
The interconnection of separate, autonomous toolsets 
into complete design environments (as opposed to 
attempts to built enormous, monolithic environments) 
has become increasingly popular as powerful, 
expressive information interchange mechanisms have 
become available. The Extended Markup Language 
(XML) in particular has become the catalyst for a 
number of important advances. For example, it has 
formed the basis for the definition of a standard 
design interchange format between UML tools; and 
recently it has been used to represent application 
family trees for real-time systems (Cechticky, et al., 
2004). In this context, XML techniques serve as the 

basis for import and export between the tools, as 
described in the following. 
 
 
4.1 From control design to software design 
 
The schema for the import of the functional control 
design is illustrated in Figure 3. 
 
The MDL file describing the Simulink control model 
is parsed and according to a pre-defined DTD 
translated by the tool into a well-formed XML file 
containing all the relevant information. Then this 
XML tree is processed and navigated using the XML 
library and the corresponding HRT-UML specialized 
entities are created and made available to the user. 
 

 

mdl 
Simulink model 

description 
(internal) XML 

model 

parser
+XML library 

Internal model 
factory + 

XML library 

Internal 
HRT-UML 

data 
structures  

Fig. 3. Import from Simulink. Import is based on use 
of XML standard language constructs. 

 
Note that the first step of the process, from MDL to 
XMI, has been designed in order to be able to 
implement with minor effort (i.e. simply providing 
the right parser) the import of models from other 
functional modeling environments such as Scilab. 
 
 
4.2 From software design to co-simulation tool 
 
The automated export process from the design model 
to the co-simulation tool is illustrated in Figure 4. 
 

 

Internal 
HRT-UML 

data 
structures

(internal) 
XML 

model 
description

XMI 
library 

XSLT 
processor 

True-
Time 

library

Matlab/ 
Simulink 

.mdl files 
+ .m/C++ 
files 

Automatic/semiautomatic Flow 

Rework based on feedback 

 
Fig. 4. Export to co-simulation. Appropriate files are 

generated for TrueTime environment. 
 
When the user requests a combined simulation, the 
following sequence is performed automatically: 



     

��ask the user for the tool’s required run time 
settings; 

��the model abstractions of the system that are 
relevant for simulation are stored in an internal 
XML format; 

��the XML file is then pre-processed by XSLT in 
order to apply ad hoc templates and generate 
suitable files for the target tools; 

��the appropriate tool is run on the resulting files. 
 
As in the case of import, the export mechanisms have 
been defined to maximize ease of substitution of one 
co-simulation tool for another. 
 
Figure 4 also gives an indication of the design 
workflow carried out by the user: as described above, 
the major software architectural design activity is 
carried out within the HRT-UML environment, and 
then co-simulation files are automatically generated. 
At this point, the workflow effectively moves into the 
validation activity. If co-simulation reveals that the 
specified system performance constraints are not met, 
then the user returns to the HRT-UML environment 
and reworks the software architecture – for example, 
selecting a different set of task allocations. 
 
A common objection to this workflow is often heard: 
why not carry out the entire design workflow directly 
in the co-simulation tool? Why “waste” time with a 
separate architectural design in the UML 
environment? Transferring the entire workflow into 
the co-simulation tool initially sounds appealing; but 
it reflects a fundamentally myopic point of view of 
small, monolithic system development. A co-
simulation tool is not a software engineering 
environment. It provides no facilities addressing the 
issues raised earlier, such as the specification of 
reusable components together with required and 
provided interfaces. How might a Bambino specified 
in a co-simulation tool be incorporated into a 
completely different system? The co-simulation tool 
remains silent on that question, whereas the HRT-
UML environment is specifically designed to address 
it. How would entire variants of alternative software 
architectures be managed and archived in a co-
simulation tool? It was never intended to address such 
issues. Not even a powerful environment like Matlab 
addresses these important software engineering 
issues; they require a different perspective. 
 
 

5. CONCLUSIONS 
 
The number of challenges for the control engineer in 
developing non-trivial software/hardware systems is 
significant; some of those challenges are addressed in 
this paper. But the most significant challenge involves 
a change in mindset in the control community. It is 
time to stop viewing systems in the control domain as 
“control engineering artifacts with a software-related 
dimension,” but rather as “software engineering 
artifacts with a control-related dimension.” Only 
through this change in perspective will the real 

obstacles to the development of large-scale, flexible, 
component-oriented systems in this domain begin to 
be addressed effectively. 
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