

SOFTWARE METHODOLOGICAL AND TOOL SUPPORT FOR EMBEDDED CONTROL SYSTEMS

Silvia Mazzini, John Favaro, Stefano Puri, Michele Bavaro

Intecs S.p.A., via U. Forti - Trav. A, 5, I-56121 Pisa, Italy
silvia.mazzini@pisa.intecs.it

Abstract: The benefits of significant advances in general software engineering support
environments in recent years have yet to be realized in the area of embedded control
systems, due to a particularly demanding set of requirements. A toolset providing
methodological and tool support is presented which addresses specific challenges to
system development in the control domain including component-oriented development,
reusability, object-oriented design, integration of third-party tools, and validation.
Copyright © 2005 IFAC

Keywords: software engineering, software tools, software reliability, validation, safety.

1. INTRODUCTION

The real-time and embedded systems market is a
highly specialized area in which rapid progress has
enabled the construction of ambitious distributed and
multi-objective control systems. At the same time, the
power and flexibility of available platforms has lead
to an ever-increasing domination of the software
component of complete systems solutions. Yet the
provision of adequate software design methods and
support still lags far behind. Consequently, today
most of the cost in system development involves ad
hoc expensive system integration and validation
techniques, which rely almost exclusively on time-
consuming simulations and on testing more or less
complete versions of the system.

The industrial community, facing increasing
commercial pressures, has now begun to demand the
same powerful software design and development
environments that are available to the software
engineering community at large. This not only
implies provision of specialized facilities such as
scheduling algorithm verification, but also the ability
to exploit the best practices that have evolved in the
software engineering community over the years,
including flexible, modular architectures, platform-
independent design techniques, configuration
management of program families, reusable software
components – in short, the best results of the software
engineering community over the past four decades.

The contribution of software engineering to the real-
time embedded domain consists not only – not even

most significantly – of technologies (such as reusable
modules and code generators) but of methodologies,
such as object-oriented design (Gamma, et al., 1995)
and the use of standardized notations such as the
Unified Modeling Language (Booch, et al., 1998).
Methodologies and the best practices they embody
have been relatively unknown to date in the real-time
and embedded community, a domain where
familiarity with software engineering is often
acquired on an “as-needed” basis. The Unified
Modeling Language (UML) has become the reference
point around which tool vendors have organized their
offerings to the real-time and embedded systems
market. However, current UML tools lack support for
the definition of explicit time constraints on the
computations associated to design elements or to their
collaborations, they do not offer an a priori analysis
regarding the enforcement of the time constraints
themselves, with respect to the system resource
allocation strategy and the adoption of a suitable run-
time computational model. Moreover none of these
tools provides sufficient support for handling all the
different development phases, especially for systems
with a significant control component. These phases
usually include design of control laws, supervision
logic, real-time task scheduling, modeling of
distribution and communication, etc. This paper
describes a design methodology and environment that
addresses such issues.

2. REQUIREMENTS FOR EMBEDDED CONTROL
SYSTEM DEVELOPMENT

In order to provide a concrete context for the
discussion, an application is presented that poses a
number of challenges to the objective of providing
methodological and tool support for advanced
applications in the control domain. The application,
under development at the Swiss Federal Institute of
Technology in Lausanne (EPFL) under the auspices
of the European Union IST project RECSYS, consists
of an application involving multiple heterogeneous
autonomous robots of two types (Figure 1).

Mamma
(RoboX)

Bambino
(Smartease)

Fig. 1. Coordinated autonomous robots. Mamma

robot is intelligent and coordinates multiple,
inexpensive Bambino robots which can be
sacrificed in dangerous environments.

The Mamma is an expensive, intelligent robot with
localization capabilities; Bambini are inexpensive,
expendable devices with limited intelligence and
localization capabilities. The mission of the set of
robots formed by one Mamma and multiple Bambini
is to explore an indoor environment to find one or
more predefined targets. The team of robots moves
from one location to another in a coordinated manner
led by the Mamma. Real-world applications include
the clearing of anti-personnel mines.

The application provides an important example of a
large category of applications in the robotics area and
more generally in the area of autonomous agent-based
systems. Such applications are characterized by:

��Independent development of individual

components (e.g. Mamma, Bambini)
��Multiple copies of identical components (e.g.

Bambini)
��Flexible assembly of components into an overall

system design (e.g. Mamma plus variable number
of Bambini)

These characteristics place a number of requirements
on both software engineering design methodology
and tool:

��The methodology and tool must not force the user

to design an entire monolithic system, but rather
must allow the separate design, architectural
modeling, validation, and coding of a single
subsystem (e.g. Mamma) to be carried out in

complete independence from other application
components;

��The toolset must make it relatively easy and
convenient to clone an application component
design (e.g. a Bambino) with correctly preserved
semantics;

��Finally, the methodology and toolset together
must make it relatively straightforward to create,
configure, and validate entire application systems
from different combinations of components. This
requirement is related to a current line of research
at EPFL on the design of reusable control
components that retain robust real-time
characteristics (Pont and Siegwart, 2004).

These requirements effectively bring the challenge of
component-based development into the control and
robotics domain; the first step in meeting this
challenge is to amend the deficiencies of the Unified
Modeling Language in this regard.

3. EXTENDING THE UML FOR HARD REAL-
TIME SYSTEMS DEVELOPMENT

In this section a methodology and tool are described
that address the fundamental deficiencies of the UML
and associated tool support when applied to
demanding real-time systems development,
permitting its powerful mechanisms for component-
based development to be exploited.

3.1 HRT-UML methodology

In the European aerospace community a reference
methodology for design is the Hierarchical Object
Oriented Design (HOOD) and in particular its
extension for the modeling of hard real time systems,
Hard Real Time-Hierarchical Object Oriented Design
(HRT-HOOD), recommended by the European Space
Agency for the development of on-board systems
(Burns and Wellings, 1995). The aerospace
experience shows that the design of Hard Real-Time
systems needs methodologies suitable for the
modeling and analysis of aspects related to time,
schedulability and performance.

The HRT-UML method (D’Alessandro, et al., 2002)
defines an extension profile of the Unified Modeling
Language, which permits the designer to express the
concepts and techniques of the HRT-HOOD method
in standard UML. It combines the benefits of a
mature, well-understood hard real time design method
and an internationally recognized object-oriented
design standard notation.

Furthermore, HRT-UML provides an integrated
methodological solution for the design of complex
real-time embedded systems and for their evaluation
and verification, according to rigorous techniques
such as formal verification, model based
dependability evaluation and schedulability analysis.

3.2 HRT-UML design principles

The starting point for an HRT-UML design is not the
definition of classes, but rather the set of objects that
compose the system and their interconnections.
Therefore an HRT-UML system is built by directly
defining objects and links instead of classes and
relationships. This means that the first thing an HRT-
UML developer has to deal with is the creation of
objects in the system space, without any concern for
class issues. Classes of objects become an interesting
concern only when reuse of objects is foreseen. These
same fundamental real-time design principles carry
over into the RECSYS toolset.

An HRT-UML project is therefore composed of a set
of interacting objects, which are organized in a
structure according to several principles:

��Structural Decomposition. Objects may be

decomposed into other objects, so that the system
can be represented as an include graph or parent-
child hierarchy of objects;

��User-Provider Relations. Objects may use
services of other objects, so that the system can be
represented as a use graph or user-provider
hierarchy of objects;

��Object Nested Notation. Objects have a compact
notation that includes the operation compartment,
allowing users to avoid having to use different
diagrams (i.e. class diagrams); and an optional
compartment showing the object internals (i.e. the
decomposition), which permits users to better
understand the system topology;

��Multiple Static Instances. Objects may have the
same structure and properties but differ in their
attribute initialization values and have an
independent state evolution. The common
structure and properties of such objects are
factored into the Underlying Class Model, and an
object model, the Prototype Instance, from which
a new instance may be cloned. This facility is
particularly relevant to the RECSYS case study
under implementation by EPFL, where multiple
instances of autonomous robotic systems are
created.

In summary, in the HRT-UML approach, the “class
model,” which reflects the constructive approach to
designing the system in classical object-oriented
methods, is considered as a background model, which
can be largely derived from the object model in an
automatic way. The HRT-UML toolset allows users
to build their systems dealing only with objects,
automatically creating and maintaining the underlying
class model for the purpose of UML metamodel
integrity. This is managed in a transparent way for
users.

When multiple static instances are needed (as in the
case of multiple Bambini for the application
involving multiple autonomous robots), the class
concept comes into the picture: cloning the prototype

instance creates a new instance of a class. The new
object may have use-relations in the system with
required objects, which are represented as unbound
placeholders. They have to be subsequently bound
(that is, redirected) to some real object, which is
visible in the instantiation environment.

3.3 Real-Time Attributes and Schedulability Analysis

HRT-UML objects and operations have associated
real-time attributes, allowing specialized analyses
such as schedulability analysis to be performed. The
most fundamental attribute is the type of the object
itself. An HRT-UML design contains the following
types of objects:
��Passive - have no control over when invocations

of their operations are executed, and do not
spontaneously invoke operations in other objects;

��Active - may control when invocations of their
operations are executed, and may spontaneously
invoke operations in other objects. The most
general type of object;

��Protected - may not have arbitrary
synchronization constraints and must be
analyzable for the blocking times they impose on
their callers;

��Cyclic - represent periodic activities;
��Sporadic - represent sporadic (in contrast to

periodic) activities.

Some further attributes are concerned with mapping
timing requirements onto the design (e.g. the
deadline). Other attributes have to be set before
schedulability analysis can be performed (e.g. the
worst case execution time). Other attributes are set
after this analysis automatically (e.g. the priority).

For each specified mode of operation, cyclic and
sporadic objects have a number of temporal attributes
defined:
��The period of execution for each cyclic object;
��The minimum inter-arrival time for each sporadic

object;
��Offset time for each cyclic object;
��Deadlines for all sporadic and cyclic activities.

In order to undertake schedulability analysis, the
worst-case execution time for each thread and all
operations (in all objects) must be known. After the
design activity these can be estimated (taking into
account the execution environment constraints) and
appropriate attributes assigned. The better the
estimates, the more accurate the schedulability
analysis. Good estimates come from component reuse
or from arguments of comparison (with existing
components on other projects). During the
architecture design activity the designer commits to
the run-time scheduling approach – that is, the pre-
emptive static priority scheduling with priorities
assigned using deadline monotonic scheduling theory.

3.4 HRT-UML and UML 2.0

The most stable version of the UML is 1.4, in effect
for several years and the reference version for nearly
all methodologies and toolsets on the market.
However, a major new version 2.0 has recently been
approved for release, whose impact on the evolution
of HRT-UML is discussed in this section.

Interestingly, the changes that have a major impact on
HRT-UML are not those concerning real-time issues
– these issues are still handled primarily (and
appropriately) in profiles rather than the official
language definition – but those concerning software
engineering issues, and in particular issues of
component-based development and reuse. Earlier
versions of the UML had few (or inadequately
defined) facilities for supporting hierarchical structure
or component composition. They also contained
inadequate mechanisms for specifying the features of
components or modules intended to be reusable.

Ports, provided and required interfaces. One of the
most significant weaknesses in earlier versions of the
UML was the lack of mechanisms, essential to reuse,
for specifying both the internal and external
environment of an object. HRT-UML introduced the
notion of “external placeholder objects” which model
the interacting environment of an object. The external
placeholders of HRT-UML may now be replaced in
UML 2.0 by port-required interface couples. Having
different ports – with possibly the same required
interfaces, whenever more than one partner object is
needed – addresses the issue of topology (in contrast,
a required interface only gives the abstract
specification of required objects). The HRT-UML
notion of binding placeholder objects is equivalent to
inter-port connection with compatible interfaces
(“required” against “provided”).

Structured classes. The new concept of structured
classes has been introduced in UML 2.0 to represent
classes composed of parts, with an explicit “nested”
notation with the purpose of modeling containment
hierarchies. This concept yields a more standard form
of support for the HRT-UML hierarchical orientation.
As noted previously, HRT-UML introduces the
notion of “prototype instance” in order to model the
internal hierarchical structure of a class. It turns out
that this is exactly equivalent to the concept of
structured classes, and that therefore a more standard
representation in the meta-model and visualization at
notational level is possible in mapping onto UML 2.0.
Furthermore, it is notable that the port-interfaces,
connectors and structured-classes concepts allow for
standard modeling of the HRT-UML delegation
relations between provided interfaces and internal
objects.

Components. The component model has been revised
in UML 2.0 to make a number of implicit concepts
from UML 1.4 explicit and more generally
applicable. A component is defined in UML 2.0 as a

modular unit with well-defined interfaces that is
physically replaceable within its environment. As
noted earlier, the specification of internal and external
interfaces is a necessary precondition for reusability –
but it is not sufficient. A reusable component must be
constructed as such: its internal and external ports and
interfaces must be accurately modeled in order to
encapsulate in itself all the possible assumptions on
the surrounding environment. The component must
also be made safe from any sequence of requests from
its surrounding environment. This is quite different
from designing a class (even a structured one) just for
the system under development. UML 2.0
components, inspired by years of experience with
software component architectures such as CORBA
and COM, bring in the final bit of semantics
necessary for true component-oriented development.

Note that, as useful and important as the concepts
provided by UML 2.0 are, they are still independent
of the major methodological innovations of HRT-
UML, such as the focus on objects rather than classes
and the mechanisms for cloning in a semantically
clean fashion. UML 2.0 will help bring HRT-UML
into the mainstream faster, but the contributions of
HRT-UML stand on their own.

4. INTEGRATING SOFTWARE ENGINEERING
AND CONTROL-ORIENTED TOOLS

The HRT-UML methodology and toolset described
above go a long way toward providing the kind of
support needed for the development and analysis of
demanding real-time systems in the control domain;
but alone they are not enough to provide complete
support for what has come to be known as platform-
based design in the control community (Balarin, et
al., 1997). This popular approach involves firstly the
specification of pure control-related functional
properties of the system, followed by mapping to
candidate hardware/software architectures, and finally
co-simulation of a selected hardware/software
architecture in order to verify overall fulfillment of
real-time and resource constraints (Liu, et al., 2002).

The most widely disseminated, firmly entrenched tool
for specifying functional properties of control systems
is Simulink, from the Matlab family of tools. Practical
and commercial necessity therefore dictates the
provision of a possibility for the HRT-UML toolset to
interact with the Simulink tool.

Similarly, co-simulation is generally carried out with
the use of highly specialized tools, which often make
use of the Matlab environment for their operation. An
example of such a tool for co-simulation is TrueTime
(Cervin, et al., 2003; Henriksson, et al., 2004).
TrueTime is a Matlab-based simulator for real-time
control systems developed at Lund University for co-
simulation of controller task execution in real-time
kernels, network transmissions, and continuous plant
dynamics. It provides event-based simulation, real-

time kernel blocks, and appropriate network blocks
(e.g. Ethernet, CAN, TDMA, FDMA, Round Robin,
and switched Ethernet networks).

Although TrueTime is not a universal, nearly ad hoc
standard tool like Simulink, it does represent a class
of tools that is so specialized that it would be
impractical to consider extending the HRT-UML
toolset to cover the same functionality. A much better
and more flexible solution is to provide for interaction
between all three toolsets, each handling its own job
in the best way possible.

Figure 2 illustrates the overall design environment
provided in this manner.

TrueTime
Co simulation

Simulink
Functional control design

HRT-UML Toolset
Software architectural design

Scheduling analysis

Fig. 2. Design environment. Simulink functional

control designs are mapped and input to HRT-
UML toolset where architectural design and
schedulability analysis is performed. Candidate
hardware-software architectures are co-simulated
with TrueTime.

The interconnection of separate, autonomous toolsets
into complete design environments (as opposed to
attempts to built enormous, monolithic environments)
has become increasingly popular as powerful,
expressive information interchange mechanisms have
become available. The Extended Markup Language
(XML) in particular has become the catalyst for a
number of important advances. For example, it has
formed the basis for the definition of a standard
design interchange format between UML tools; and
recently it has been used to represent application
family trees for real-time systems (Cechticky, et al.,
2004). In this context, XML techniques serve as the

basis for import and export between the tools, as
described in the following.

4.1 From control design to software design

The schema for the import of the functional control
design is illustrated in Figure 3.

The MDL file describing the Simulink control model
is parsed and according to a pre-defined DTD
translated by the tool into a well-formed XML file
containing all the relevant information. Then this
XML tree is processed and navigated using the XML
library and the corresponding HRT-UML specialized
entities are created and made available to the user.

mdl
Simulink model

description
(internal) XML

model

parser
+XML library

Internal model
factory +

XML library

Internal
HRT-UML

data
structures

Fig. 3. Import from Simulink. Import is based on use
of XML standard language constructs.

Note that the first step of the process, from MDL to
XMI, has been designed in order to be able to
implement with minor effort (i.e. simply providing
the right parser) the import of models from other
functional modeling environments such as Scilab.

4.2 From software design to co-simulation tool

The automated export process from the design model
to the co-simulation tool is illustrated in Figure 4.

Internal
HRT-UML

data
structures

(internal)
XML

model
description

XMI
library

XSLT
processor

True-
Time

library

Matlab/
Simulink

.mdl files
+ .m/C++
files

Automatic/semiautomatic Flow

Rework based on feedback

Fig. 4. Export to co-simulation. Appropriate files are

generated for TrueTime environment.

When the user requests a combined simulation, the
following sequence is performed automatically:

��ask the user for the tool’s required run time
settings;

��the model abstractions of the system that are
relevant for simulation are stored in an internal
XML format;

��the XML file is then pre-processed by XSLT in
order to apply ad hoc templates and generate
suitable files for the target tools;

��the appropriate tool is run on the resulting files.

As in the case of import, the export mechanisms have
been defined to maximize ease of substitution of one
co-simulation tool for another.

Figure 4 also gives an indication of the design
workflow carried out by the user: as described above,
the major software architectural design activity is
carried out within the HRT-UML environment, and
then co-simulation files are automatically generated.
At this point, the workflow effectively moves into the
validation activity. If co-simulation reveals that the
specified system performance constraints are not met,
then the user returns to the HRT-UML environment
and reworks the software architecture – for example,
selecting a different set of task allocations.

A common objection to this workflow is often heard:
why not carry out the entire design workflow directly
in the co-simulation tool? Why “waste” time with a
separate architectural design in the UML
environment? Transferring the entire workflow into
the co-simulation tool initially sounds appealing; but
it reflects a fundamentally myopic point of view of
small, monolithic system development. A co-
simulation tool is not a software engineering
environment. It provides no facilities addressing the
issues raised earlier, such as the specification of
reusable components together with required and
provided interfaces. How might a Bambino specified
in a co-simulation tool be incorporated into a
completely different system? The co-simulation tool
remains silent on that question, whereas the HRT-
UML environment is specifically designed to address
it. How would entire variants of alternative software
architectures be managed and archived in a co-
simulation tool? It was never intended to address such
issues. Not even a powerful environment like Matlab
addresses these important software engineering
issues; they require a different perspective.

5. CONCLUSIONS

The number of challenges for the control engineer in
developing non-trivial software/hardware systems is
significant; some of those challenges are addressed in
this paper. But the most significant challenge involves
a change in mindset in the control community. It is
time to stop viewing systems in the control domain as
“control engineering artifacts with a software-related
dimension,” but rather as “software engineering
artifacts with a control-related dimension.” Only
through this change in perspective will the real

obstacles to the development of large-scale, flexible,
component-oriented systems in this domain begin to
be addressed effectively.

REFERENCES

Balarin, F., M. Chiodo, P. Giusto, H. Hsieh, A.

Jurecska, L. Lavagno, C. Passerone, A.
Sangiovanni-Vincentelli, E. Sentovich, K.
Suzuki, B. Tabbara (1997). Hardware-Software
Co-Design of Embedded Systems: The POLIS
Approach. Kluwer Academic Press, Dordrecht.

Booch, G., I. Jacobsen, J. Rumbaugh (1998). The
Unified Modeling Language User Guide.
Addison-Wesley, Boston.

Burns, A. and A. Wellings (1995). HRT-HOOD: A
Structured Design Method for Hard Real-Time
Systems. Elsevier Science, Amsterdam.

Cechticky, V., A. Pasetti, O. Rohlik, W.
Schaufelberger (2004). XML-Based Feature
Modelling. In: Software Reuse: Techniques and
Tools (J. Bosch and C. Krueger (Ed)), pp. 101-
114. Springer Verlag, Heidelberg.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, K-E.
Årzén (2003). How Does Control Timing Affect
Performance? IEEE Control Systems Magazine,
23:3, pp. 16–30.

D’Alessandro, M., S. Mazzini, M. Di Natale, G.
Lipari (2002). HRT-UML: A Design Method for
Hard Real-Time Systems based on the UML
Notation. In: Proc. 2002 Conf. On Data Systems
in Aerospace. Dublin, Ireland.

Gamma, E., R. Helm, R. Johnson, J. Vlissides (1995).
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Boston.

Henriksson, D., A. Cervin, K-E. Årzén (2004).
TrueTime: Real-time Control System Simulation
with MATLAB/Simulink. In: Proc. Nordic
MATLAB Conference. Copenhagen, Denmark.

Liu, J., J. Eker, J. Janneck, E. Lee (2002). Realistic
Simulations of Embedded Control Systems. In:
Proc. 15th IFAC World Congress on Automatic
Control. Barcelona, Spain.

Pont, F. and R. Siegwart (2004). Towards Improving
Robotic Software Reusability Without Losing
Real-Time Capabilities. In: Proc. First
International Conf. on Informatics in Control,
Automation and Robotics. Setubal, Portugal.

