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Abstract: Two-level model predictive control (MPC) is the dominant multi-
variable control technology in the process industries. In large-scale MPC appli-
cations, such as plant-wide control, two common approaches are centralized and
decentralized MPC schemes, which represent the two extremes in the “trade-off”
among the desired characteristics of an implemented MPC system. Alternatively
the coordination of decentralized MPC systems may offer the best attributes of
each of the extremes. The price-driven coordination scheme requires the existence
of “equilibrium prices” and has extensive large-scale applications in economic
planning. On-line solutions to large-scale optimization problems require an efficient
price-adjustment method. As the coordination problem for decentralized MPC falls
into the category of limited resource case, this work develops an efficient price-
adjustment algorithm by using Newton’s method, in which sensitivity analysis
and active set change identification techniques are employed. The proposed price-
adjustment strategy is incorporated into a coordinated, decentralized MPC scheme
that shows a high degree of accuracy, while retaining the reliability of original
decentralized scheme at a reasonable computational load. Copyright®© 2005 IFAC
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1. INTRODUCTION

Model predictive control (MPC) has gained exten-
sive application in industry for controlling mul-
tivariable process with constraints. Almost all
MPC products have two levels of optimization,
a steady-state target calculation and a dynamic
control calculation, at each control cycle (Qin
and Badgewell, 2003). The target calculation de-
termines the best achievable set-points, both for
input and output variables; whereas, the optimum
trajectory to move the plant to the steady-state
target is determined in the dynamic calculation.

1 Email : fraser.forbes@ualberta.ca, phone : 780 492-0873,
fax : 780 492-2881.

In both calculations, a process model is required
to perform the optimization. In plant-wide control
applications the problem size can be very large.

Two common paradigms for solving plant-wide
MPC calculations are centralized and decentral-
ized strategies. The major difference is how they
handle interactions among operating units (Cheng
et al., 2004). A fully centralized or monolithic
MPC for an entire plant is often undesirable
and difficult, if not impossible, to implement
(Lu, 2003). Such a scheme can exhibit poor fault-
tolerance, requires a high performance central-
ized computational platform, and can be difficult
to tune. In the decentralized scheme, the plant-
wide MPC problem is decomposed into subprob-



lems by taking advantage of the block-wise struc-
ture of the plant model and these subproblems
are solved independently. Currently, decentralized
MPC strategies are widely used due to their flex-
ibility, reliability and ease of maintenance.

Conventional decentralized schemes may not be
able to provide the plant-wide optimum. In gen-
eral, decentralized schemes approximate or ignore
the interactions between operating units, while
the downstream units treat the upstream vari-
ations as external disturbances. Thus, the de-
centralized approach solves each subproblem in
terms of its own objective function, which may not
provide the plant-wide optimum. It is estimated
that the potential plant-wide benefit for a typical
refinery is 2-10 times more than a decentralized
MPC can achieve (Bodington, 1995).

Recently, more effort has been spent on improv-
ing the performance of plant-wide decentralized
control through coordination. Lu (2003) discussed
the need for cross-functional integration for de-
centralized controllers, in which a coordination
“collar” performs centralized steady-state target
calculation for decentralized MPC. Venkat et al.
(2004) proposed several coordination-based MPC
algorithms, in which augmented states are used to
model interactions, to improve plant-wide perfor-
mance via the coordination of decentralized MPC
dynamic calculation. Kumar and Daoutidis (2002)
proposed a controller design framework using a
time-scale decomposition approach, in which a
supervisory controller deals with the slow-time-
scale behavior and coordinates the distributed
controllers, which deal with the fast-time-scale be-
havior. In our previous work (Cheng et al., 2004),
Dantzig-Wolfe decomposition was applied to coor-
dinate LP-based MPC target calculation and the
performance was improved through coordination.

Our current focus is on improving decentralized
MPC performance by coordinating quadratic pro-
gramming (QP) based target calculation using
a price-driven coordination approach (Jose and
Ungar, 1998b). An efficient coordination method
based on a price-adjustment algorithm using New-
ton’s method is developed. Two case studies are
then used to illustrate the effectiveness of the
proposed approach. The first one emphasizes the
computational efficiency, while the latter shows
the efficacy on the coordination of decentralized
MPC.

2. FORMULATION OF PLANT-WIDE MPC
TARGET CALCULATION

Consider the following constrained QP formula-
tion of MPC target calculation for an individual
operating unit (Ying and Joseph, 1999)
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where y* and u* are the optimal nominal “tar-
gets” computed by upper level optimizers, yset
and ug.; are the achievable targets to be opti-
mized, while d(k) is the estimated disturbance
updated by

6(k) = Ym(k) - YSet(k|k - 1)) (3)

where y,, (k) is the measurement of outputs at
time k and yse:(k|k — 1) stands for the prediction
of outputs in last control execution. Cost para-
meters can be constructed based on financial or
optimization information. € can be defined as a
violation tolerance of the output constraints to
guarantee a feasible solution to the QP. K is the
steady-state gain matrix calculated via lineariza-
tion of the nonlinear model used in an upper op-
timizing layer or abstracted from the linear model
used by lower level MPC dynamic control.

Note the above formulation considers only the
local unit, which means its solution is optimal
with respect to the local objective and con-
straints. Starting from a conventional decentral-
ized MPC formulation, we introduce the idea of
goal-coordination method (D. A. Wismer, 1971)
and formulate a block-wise large-scale QP prob-
lem for plant-wide target optimization:
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and an augmented set of equality constraints
Y;set = U;set (6)

where equation (6) represents linking constraints
and interactions between units in the flowsheet
(e.g., the interstream consistency conditions). In
the above formulation, decision variables Y 4.; and



U,.: are the aggregations of individual unit in-
put and output set-point variables. The overall
steady-state gain matrix A has a block diagonal
structure diag{Ki, Ka,..,Kn}, as do the weight-
ing matrices Qy and Qg . Similarly, other vector
variables are the corresponding aggregations of
operating unit variables. Usually, compared with
the dimension of A, the linking constraint (6) is
of much lower dimension.

Formulated as above, the plant-wide MPC target
calculation falls into one class of problems that
can be solved by using the price-driven coordina-
tion method.

3. PRICE-DRIVEN COORDINATION
3.1 Price-driven Coordination Strategy

The price-driven coordination method in Jose and
Ungar (1998a; 1998b) is suitable for solving re-
source distribution or auction problems. In this
method, a large-scale optimization problem is de-
composed into subproblems by relaxing the re-
source constraints which connect the subsystems
together (the linking constraints in our previous
discussions). The general large-scale nonlinear op-
timization problem considered here is:

n
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where x; is the vector of decision variables, X is
the feasible set, f; is the objective function for sub-
problem i, R; is the vector of resource demands,
and R represents the availability of common re-
sources. The subproblems are formulated using
the local constraints and the objective function
obtained by augmenting f; and the subsystem
demands R;(x;) as shown in equation (8),

max  fi(x;) — (p+ qRi(x:)) " Ri(xi)  (8)

X, €X;
where p is a given price vector and ¢ is a small
positive scalar. It was shown in Jose and Ungar
(1998b) that if the subproblems have concave, con-
tinuous objective functions and compact, convex
feasible sets, there exist equilibrium augmented
prices in the form of p+¢R that optimally coordi-
nate the subproblems for given resource availabil-
ity R. For a given ¢, the equilibrium prices satisfy
the nonlinear complementarity (NLC) problem:

For p € R4 such that:
A(p;q) <0 (9)
P’ (~A(piq)) =0

where A(p;q) = >, Ri(p;q) — R, which is the
corresponding excess resource demand ( i.e., the

difference between the total demand of all sub-
problems and the plant-wide resource availabil-
ity). Therefore, if we can find the equilibrium
prices from the above NLC problem, the optimum
of (7) can be obtained by solving the subproblems
independently in equation (8).

The mechanism for adjusting p until it satisfies
equation (9) can be considered as the coordination
in price-driven approach. For the plant-wide MPC
problem in equation (4) to (6), the linking con-
straints are formulated as the equality constraints,
and (9) is simplified to

A(p;q) =0 (10)

Therefore, in coordinating MPC subproblems, the
prices can be adjusted by numerically solving the
system of equations in (10).

3.2 An Efficient Price-adjustment Algorithm

An efficient price-adjustment algorithm is devel-
oped based on Newton’s method for solving equa-
tion system (10). During iterations, the coordina-
tor adjusts the prices as follows
dA(k)
dp(k)
where A(p;q) = >, Ri(p;q) — R, a is the step
size, and

p(k+1) = p(k) —af )TlAk)  (11)

J_ dA (k) _ Z dR;(k) (12)

dp(k) ~ 2= dp(k)
Figure 1 explains the information exchange be-
tween the coordinator and subsystems. The co-
ordination process is similar to setting up the
prices for selling common resources to different

consumers. The coordinator sends a price vector
of the resources to every subsystem. After solving

Coordinator
P(k) Ri(k) Rn(k) P(k)
dRi1(k) dRn(k)
dP(o) dP(k)

Fig. 1. Price Adjustment Schematic Diagram

local optimization problems, the subsystems in-
form the coordinator of the resource demands (R;)
at current prices and their responses to the price
change (dR;/dp). The coordinator then collects
these two pieces of information to evaluate A and
dA/dp, and the prices are updated using equa-
tion(11). This process of information exchange
continues until the total demand is equal to overall
supply, i.e., A =0.



The derivative information dR;/dp of local sub-
problems is obtained by sensitivity analysis. Pro-
cedures for sensitivity analysis of nonlinear pro-
gramming problems can be found in McCormick
(1983) and Wolbert et al. (1994). In this work, the
QP subproblems have the form

min (¢! —p?B;)x; —
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where B, is the coefficient matrix in the link-
ing constraints corresponding to the variables of
the " subproblem. Then the sensitivity matrix,
dx;/dp, can be obtained by solving the following
system of linear equations assuming that the ma-
trix T is full column-rank

VpX; BzT
VoA 0
r LA - 16
VpAl 0 ( )
Vpi10; 0
where
Q+¢BTB; A“T A" ¢
A1 0 0 0
= AA’:"eq 0 0 0 (17)
TA 0 0o I

The vectors A and 4 are the Lagrange multipliers
for the equality constraints and active inequality
constraints in (14), respectively, and the vector jo
is the slack variable corresponding to inactive con-
straints in (14). The subscripts 4 and ; indicate
the active and inactive status of the inequality
constraints.

The Jacobian matrix J used in equation (11),
which is evaluated by linear sensitivity analysis, is
valid only when there is no active set change; how-
ever, during price-searching, there is no guarantee
that the active set for any subproblem does not
change. Therefore, a full Newton step is taken only
when no active set change in each subproblem is
identified. Otherwise, a step size «, less than one,
should be taken.

The largest step size that could be taken before
a change in active set occurs can be determined
from the sensitivity information. When there is
an active set change, one of the slack variables
and Lagrange multipliers in the subproblems will
become zero. The slack variables or Lagrange
multipliers, denoted by #, as a function of p is
given as follows

0=0"(p(k) +Vpb(p—p(k))  (18)

Then equation (11) can be substituted into equa-
tion (18) to express 6 in terms of a. We can equate
0 to 0 for every slack variable and Lagrange mul-
tiplier for each subproblem to determine the value
of a which makes individual constraint change its
activity. The smallest positive o will be taken as
the step size candidate for the current iteration. If
it is less than 1, it will be chosen as the step size,
otherwise, a full Newton’s step is taken. Although
this procedure is not shown in Figure 1 for clarity,
the above calculation can be implemented in the
subproblems as « can be determined indepen-
dently for each subproblem.

4. ILLUSTRATIVE CASE STUDIES
4.1 Coordination Strategies Numerical Efficiency

A simple case study is used to compare the pro-
posed algorithm and the P-control price-update
scheme (Jose and Ungar, 1998b), where the prices
are updated by

p(k+1) = p(k) + kA(k) (19)
Consider the following QP problem
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x 2

s. t.
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>0 (20)
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Q = diag{2,4,3,8} ' =125 6 §

The problem can be decomposed into two sub-
problems with two linking constraints. In Table
1, performance of these two algorithms is com-
pared based on the number of iterations required
to reach the equilibrium prices. The initial guess
P = 0 is used for both cases. The proposed price-
adjustment algorithm shows a substantial conver-
gent rate improvement.

Table 1. Performance of Price-Update

Methods Tuning Iterations Convergence
Newton’s NA 2 Yes
P-control ke = 0.02 400 Yes
P-control ke = 0.04 139 Yes
P-control ke =0.1 NA No

Furthermore, the proposed algorithm provides a
guideline for the tuning of proportional gain in P-
control scheme. Comparing equation (11) and (19)



shows that the proposed price-adjustment scheme
adaptively updates the P-control gain within co-
ordination, letting k. = —aJ~'. Moreover, for
multi-variable systems (i.e., multiple resources),
k. is a diagonal matrix in the P-control scheme,
while it is a full matrix in the proposed scheme.

4.2 Coordination of QP-based Target Calculation

In this subsection, the performance of three MPC
strategies, the centralized, decentralized, and co-
ordinated decentralized strategies are compared.
The system model discussed in Cheng et al. (2004)
is used in this case study. We compare their per-
formance in terms of objective function values and
computational effort.

Shown in Figure 2, the disturbances enter the
plant where dashed lines indicate, and they cause
changes in the optimal set-points values. In this
case study, we consider disturbances directly im-
posed on the outputs every 10 control executions.
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Fig. 2. Interacting MIMO Operating Units

Each operating unit has its own objective, which
is a subset of information used by plant-wide op-
timizers. Following the QP formulation (4) to (6),
and using a velocity form of decision variables,
the objective is to drive the inputs and outputs
as close to zero as possible. To simplify the dis-
cussion, only quadratic terms related to Y and
U,.: are included in the objective function

Yma;v = 1aYmin = _1;Umaw = 1aUmzn =-1
Qv =1 Q=1 (22

Three MPC strategies (centralized, decentralized,
and coordinated, decentralized MPC) are evalu-
ated for their abilities to keep the plant at desired
setpoints in steady-state target calculations. Note
that, in the target calculation of decentralized
scheme, the upstream decisions are considered as
disturbances in the downstream units.

In this case study, disturbances are generated in
a similar way as was described in Cheng et al.
(2004), and the magnitude in £0.1. We use the
method in equation (3) to update the disturbance
information at every control execution.

The following function is used to determine cumu-
lative performance for comparison purpose:

P=> Z(k)x T+ > V(k)*T, (23)

where Z (k) is the actual plant objective at the k'"
target calculation; V' (k) represents the penalty for
output constraint violations when we implement
the calculated targets; and T is the sampling
period between two target calculations. Thus
the smaller the cumulative performance function
value, the closer the set-points are to the desired
targets from upper level optimization, i.e., better
performance is achieved.
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Fig. 3. Tracking Performance of MPC Strategies

Figure 3 shows the ability of different MPC
steady-state target calculation strategies to track
the best achievable targets. Note that the coor-
dinated scheme gives the same performance as
the centralized MPC scheme and the two curves
overlap. However, the decentralized scheme shows
much lower performance.

Table 2 compares the performance of different
strategies for a simulation of 50 target calculation
executions. From the reported objective function
values in the table, we can see that the centralized
and the coordinated, decentralized target calcula-
tion keep the plant running closer to desired set-
points.

Table 2. Performance Comparison

Control  Objective Computation Problem
Strategy  Function Effort* (s)  Dimension
Central 0.3457 0.7073 38 x 14
Decentral 0.5885 0.6477 10x4x3
Coordin 0.3457  0.4096 + 1.7524 12 x5 x 3

* Monte-Carlo simulations performed in Matlab 6.5, Pen-
tium III 1.0G Hz, 512M RAM machine.

The computational effort is also reported in table
2 as the average simulation time for 50 MPC exe-
cutions. Since all the simulations were performed
in a single-processor machine, we approximate the
computational load in the decentralized scheme by
summing up the maximum time spent on solving
each individual subproblem at one interval. We
report the computational load of the coordinated
scheme in two components. The first is the time
taken for coordination and the second part is
the time used for solving the most computation-
ally intensive subproblem at each iteration. Two



points should be noted from this report. Firstly,
the coordination time takes up a rather small
part of the total time in the coordinated scheme,
because price update (solving a system of linear
equations) is computationally less expensive than
solving local optimization problems. Secondly, the
overall time for the coordinated case is only a
factor of 3 more than the other two cases. This was
accomplished without using any of the available
coding techniques for decentralized computing.
Thus the above computational efficiency suggests
some promise of the proposed coordination strat-
egy for industrial on-line application.

We discuss the problem size in order to show the
ease of implementation of different MPC strate-
gies. The problem sizes are reported as the dimen-
sion of equality constraints and inequality con-
straints in a QP problem formulated for an MPC
controller. Thus, the centralized MPC scheme
has an overall QP problem, while the other two
schemes have several smaller scale problems. Note
the problem size in the coordinated scheme is
larger than that in the decentralized scheme due
to the inclusion of tear variables. In general, the
larger a QP problem, the harder to develop, tune
and maintain an MPC controller.

5. CONCLUSIONS AND FUTURE WORK

In this paper, an efficient price-adjustment algo-
rithm is developed for price-driven coordination
methods. By introducing the idea of price-driven
coordination, a new approach to solving plant-
wide MPC target calculation has been proposed.

Many industrial problems have a block-wise struc-
ture and as a result, belong to the set of decom-
posable problems, which may be solved with price-
driven coordination methods. Most importantly,
the determination of equilibrium prices is a key
factor for on-line application of the price-driven
coordination techniques. This work presents a
novel price-update method, which shows promise
in increasing the convergence rate of the price-
driven approach. This increase in computational
efficiency provides an acceptable online calcula-
tion speed for solving industrial plant-wide MPC
control and optimization problems. At the same
time, the proposed coordinated MPC scheme re-
tains the good features of decentralized schemes
such as easy tuning of decentralized MPC con-
trollers and a high degree of reliability.

In future work, industrial-scale MPC applications
will be used to evaluate the performance of the
proposed coordination method. The algorithm
may be extended to cases where not all the re-
sources are limited, so as to broaden the applica-
bility of the technique beyond MPC.
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